室温平面ホール効果による La_{0.67}Sr_{0.33}MnO₃(100)薄膜の磁気異方性 Magnetic Anisotropy of La_{0.67}Sr_{0.33}MnO₃(100) Thin Film by Planar-Hall-Effect 東理大理¹, 物材機構², 高エネ研³ 〇川村 欣也 ^{1,2}, 土屋 敬志², 養原 誠人³, 堀場 弘司³, 組頭 広志³, 寺部 一弥², 樋口 透¹

Tokyo Univ. of Sci.¹, NIMS², KEK³, OKinya Kawamura^{1, 2}, Takashi Tsuchiya², Makoto Minohara³, Koji Horiba³, Hiroshi Kumigashira³, Kazuya Terabe², and Tohru Higuchi¹
E-mail: 1517701@ed.tus.ac.jp

La_{0.67}Sr_{0.33}MnO₃(LSMO)は室温で強磁性を示し、スピントロニクス材料として注目されている。 LSMO 配向薄膜の結晶磁気異方性は基板の影響を受け大きく変化する[1]。磁気異方性は、膜面内における磁化 M と印加電流 I との角度 ϕ に依存して生じるホール効果(平面ホール効果)によって解析することが出来る[2]。LSMO 薄膜の平面ホール効果は室温でも観測されており[3]、MRAMへの応用も試みられたものの[4]、詳細な異方軸の解析は行われてない。本研究では、既報よりも精度の高い室温平面ホール効果の測定に成功し、異方軸の詳細な解析を行った。

図 1 は $SrTiO_3(100)$ 基板上に成膜した LSMO(100)薄膜における室温での平面ホール効果である。ホール抵抗 R_{Hall} は sin2 ϕ に比例し、図中の θ は外部磁場 H と電流 I との角度を示す。外部磁場を小さくすることで、結晶磁気異方性に由来した Sin カーブからのズレが生じる。図 2 は R_{Hall} $\epsilon\theta$ で微分したものであり、この値は磁化困難性を示す。 $LSMO(100)/SrTiO_3(100)$ の磁気異方性が Bi-axial であり、2 つの困難軸において異方性がわずかに違うことが示唆された。

当日は、 $SrTiO_3(100)$ 基板だけでなく、 $NdGaO_3(110)$ 基板上に成膜した LSMO の平面ホール効果についても議論する。

参考文献

- [1] F. Tsui, M. C. Smoak, T.K. Nath, C.B. Eom Appl. Phys. Lett., 76 2421 (2000)
- [2] D. Chiba, M. Sawicki, Y. Nishitani, Y. Nakatani, F. Matsukura and H. Ohno Nature 455 515(2008)
- [3] H.-J. Kim, D. G. Yoo, S-I. Yoo Mater. Lett. 123 23 (2014)
- [4] Y. Bason, L. Klein, J.-B. Yau, X. Hong, J. Hoffman, and C. H. Ahn, J. Appl. Phys. 99, 08R701 (2006)

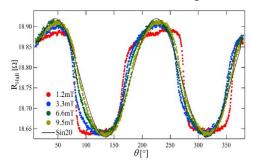


Figure 1 The PHE of LSMO(100) thin film deposited on SrTiO₃(100) substrate.

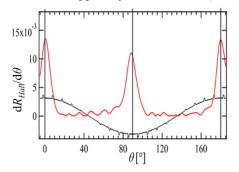


Figure 2 The magnetic anisotropy obtained from the PHE