Epitaxial strain effect on ferromagnetic resonance and magnetic anisotropy of (Ga_{0.8}Fe_{0.2})Sb thin films at room temperature

Shobhit Goel,1,a) Le Duc Anh,1,3 Shinobu Ohya1,2,3 and Masaaki Tanaka1,2

1Department of Electrical Engineering and Information Systems, The University of Tokyo,
2Centre for Spintronics Research Network (CSRN), The University of Tokyo,
3Institute of Engineering Innovation, The University of Tokyo
a)goel@cryst.t.u-tokyo.ac.jp

Magnetic anisotropy plays an important role in determining the magnetization direction of ferromagnetic electrodes in spintronic devices. In Mn-doped III-V ferromagnetic semiconductor (FMS) (Ga,Mn)As, control of the magnetic anisotropy between in-plane and perpendicular magnetization using epitaxial growth and strain effects has been demonstrated [1]. However, due to the low Curie temperature ($T_C < 300$K), the (Ga,Mn)As is not suitable for room temperature applications. To overcome this problem, recently we have successfully grown Fe-doped FMS (Ga,Fe)Sb, which shows $T_C > 300$K when the Fe concentration is higher than 29% [2,3]. Therefore, this new material is considered as a good candidate for device applications at room temperature.

In this work, we investigate the magnetic anisotropy of Ga$_{1-x}$Fe$_x$Sb ($x = 0.2$, 15nm) grown by low temperature molecular beam epitaxy (LT-MBE) on various different buffer layers: AlSb, GaSb, (In$_{0.5}$Ga$_{0.5}$)Sb and GaAs. All of the buffer layers are thick enough (300-500 nm) to be lattice-relaxed on semi-insulating GaAs(001) substrates. All the samples show T_C higher than room temperature. We carried out ferromagnetic resonance (FMR) and magnetization measurements by superconducting quantum interference device (SQUID) at room temperature, and estimated the magnetic anisotropy parameters. Fig. 1 represents an example showing the dependence of the resonance field in FMR on the applied magnetic field direction of the (Ga,Fe)Sb/AlSb sample. By fitting to this angle dependence, we obtained the values of the effective magnetic anisotropy energy (K_{eff}) and the saturation magnetization (M_s) measured by SQUID, we estimated the uniaxial anisotropy energy (K_u), the shape anisotropy energy (K_s) and the effective anisotropy energy, ($K_{\text{eff}} = K_u + K_s$) of the (Ga,Fe)Sb thin films. We performed this study on all the Ga$_{1-x}$Fe$_x$Sb samples grown on different buffers (AlSb, GaSb, (In$_{0.5}$Ga$_{0.5}$)Sb and GaAs). In this work, we define in-plane anisotropy as negative values and perpendicular anisotropy as positive values of K_u and K_{eff}. Fig. 2 a), b) and c) summarizes the K_u, K_s and K_{eff} values vs epitaxial strain ε, which is defined by $\varepsilon(\%) = (a_{\text{GaFeSb}} - a_{\text{buffer}})/(a_{\text{GaFeSb}} \times 100$, where a is the intrinsic lattice constant of each material. In Fig. 2 a), when going from tensile ($\varepsilon = -1.2\%$) to compressive ($\varepsilon = +3.9\%$) strain, the magnitude of K_u initially decreases dramatically, and changes from large negative (in-plane anisotropy) to small positive (perpendicular anisotropy). However, in Fig. 2 b) K_s changes from large negative to small negative, making K_{eff} always negative (in-plane anisotropy) as shown in Fig. 2 c). As a result, all the (Ga,Fe)Sb films examined here show an in-plane easy magnetization axis. Interestingly, K_u in the (Ga,Fe)Sb thin film grown on AlSb (tensile strain) shows a large value (-12 K/m3), which is comparable to that of (Ga,Mn)As. These results indicate that unlike (Ga,Mn)As, which shows a perpendicular easy axis in the case of tensile strain and an in-plane easy axis in the case of compressive strain [1], (Ga,Fe)Sb can only show in-plane easy axis even in the case of maximum compressive strain. (Ga,Mn)As has large K_u and small K_s, which makes K_{eff} dependence on K_u both in tensile and compressive strain, so easy axis can be tuned in perpendicular and in-plane directions more easily. In conclusion, in (Ga,Fe)Sb (except on the AlSb buffer layer), all samples show small magnitude of K_u due to which K_{eff} depends mainly on K_s, and thus, the easy magnetization axis always lies in the film plane.

This work was partly supported by Grants-in-Aid for Scientific Research (No. 26249039, No. 17H04922 and No. 16H02095), CREST of JST, the Spintronics Research Network of Japan (Spin-RNJ), and the Murata Science Foundation.

References:

Fig. 1. Angular dependence of FMR positions at 300K of a GaFeSb/AlSb sample with various H angle directions ϕ_H (shown in inset).

Fig. 2. Strain dependence of (a) Uniaxial anisotropy (K_u), (b) shape anisotropy (K_s) and (c) effective anisotropy (K_{eff}) of GaFeSb with different buffer layers.