β-Ga₂0₃基板上に形成した NiO 薄膜の結晶配向性

Crystal Orientation of NiO Thin Films Formed on β-Ga₂O₃ Substrates

石巻専修大理工、 〇中込 真二, 安田 隆, 國分 義弘

Ishinomaki Senshu Univ., [°]Shinji Nakagomi, Takashi Yasuda, Yoshihiro Kokubun

E-mail: nakagomi@isenshu-u.ac.jp

【はじめに】我々は,立方晶である MgO 基板の (100),(111),(110)の各面上に形成した単斜晶系酸化ガリ ウムβ-Ga₂O₃の結晶配向について明らかにしている[1]。 一方, (100) β-Ga₂O₃ 基板上に形成した(001)配向 NiO 薄 膜についても既に報告して[2], さらに NiO/β-Ga₂O₃間 のpn ヘテロ接合の有用性を示している[3]。本研究では、 入手可能な(201)面と(010)面のβ-Ga₂O₃基板上にゾルー ゲル法により NiO 薄膜を形成し、この両者間の結晶配 向関係について総合的に検討を行った。

【実験】ゾル溶液には、2-メトキシエタノールとモノエ タノールアミンの混合液に酢酸ニッケル四水和物を溶 解させたものを用いた。この溶液をスピンコーティン グ法で基板上に塗布してから 400℃で仮焼成する工程 を繰り返したのち、空気中700℃で1時間焼成してNiO 薄膜を作製した。NiO 薄膜の結晶配向性は, X線 20-ω スキャンおよびØスキャン測定により行った。

【結果】(201)β-Ga₂O₃ 基板上に形成した NiO 薄膜の $2\theta-\omega$ スキャン X 線回折パターンと ϕ スキャン測定結果 を Fig. 1(a)と Fig. 2(a),(b)に示す。基板表面に対して NiO は(111)配向しており、基板表面に平行な方向では NiO (100) $\|\beta$ -Ga₂O₃(100)かつ NiO [011] $\|\beta$ -Ga₂O₃ [001] であ ることがわかった。

(010) β-Ga₂O₃ 基板上に形成した NiO 薄膜の 2θ-ωス キャン X 線回折パターンと Øスキャン測定結果を Fig. 1(b)とFig. 2(c),(d)に示す。基板表面に対してNiOは(011) 配向しており、その方向は NiO (100) || β-Ga₂O₃ (100)か つ NiO [011] $\| \beta$ -Ga₂O₃ [001] であった。

β-Ga₂O₃基板上でのNiO薄膜の配向性をTable1にま とめて示す。β-Ga₂O₃基板が異なっても、酸素原子の配 列が似ている NiO (100)面とβ-Ga₂O₃(100)面とが対向す る配向関係が保たれており,両者が常に同じ位置関係 で β-Ga₂O₃ 基板上に NiO 配向膜が形成されている。

Fig. 1 X-ray diffraction pattern for NiO grown on (a) ($\overline{2}01$) and (b) (010) β -Ga₂O₃ substrates.

Fig. 2 X-ray diffraction patterns (ϕ -scans) (a), (b) for NiO formed on $(\overline{2}01)\beta$ -Ga₂O₃ and (c), (d) for NiO formed on (010) β -Ga₂O₃.

本研究は, JSPS 科	β -Ga ₂ O ₃ Sub.	Pa
研費 17K05042の	(100)	
助成を受けたもの	(201)	
です。	(010)	

Table 1. Crystal orientation relationship between NiO and β-Ga₂O₃ substrates.

は, JSPS 科	β -Ga ₂ O ₃ Sub.	Parallel plane to the surface of sub.	Direction of NiO on the surface of sub.
7K05042 の	(100)	NiO (100) β-Ga ₂ O ₃ (100)	NiO [011] β-Ga ₂ O ₃ [001]
受けたもの	(201)	NiO (111) β-Ga ₂ O ₃ (201)	NiO [011] (100) β-Ga ₂ O ₃ [001] (100)
	(010)	NiO ($0\overline{1}1$) β-Ga ₂ O ₃ (010)	NiO [011] (100) β-Ga ₂ O ₃ [001] (100)

[1] S. Nakagomi, Y. Kokubun, J. Cryst. Growth, 479, 67-74 (2017).

- [2] S. Nakagomi, S. Kubo, Y. Kokubun, J. Cryst. Growth, 445, 73-77 (2016).
- [3] Y. Kokubun, S. Kubo, S. Nakagomi, Appl. Phys. Express 9, 091101 (2016).