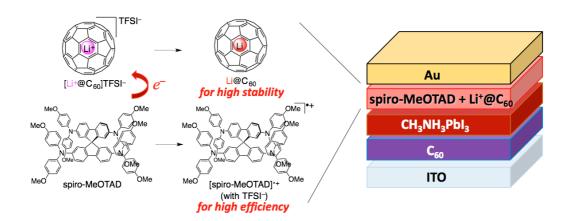
## リチウムイオン内包フラーレンをドーパント及び抗酸化剤として用いた 安定なペロブスカイト太陽電池

Stable Perovskite Solar Cells Using Lithium-Ion Endohedral Fullerene (Li<sup>+</sup>@C<sub>60</sub>)

as Both Dopant and Anti-Oxidant


東大院工<sup>1</sup>,中国科学技術大学<sup>2</sup>,東北師範大学<sup>3</sup>,産総研<sup>4</sup> 〇松尾 豊<sup>1,2</sup>,田 日<sup>1</sup>,上野 裕<sup>3</sup>,徐 昇柱<sup>1</sup>,丸山 茂夫<sup>1,4</sup>

School of Engineering, The Univ. of Tokyo<sup>1</sup>, USTC<sup>2</sup>, Northeast Normal Univ. <sup>3</sup>, AIST<sup>4</sup>
Yutaka Matsuo<sup>1,2</sup>, Il Jeon<sup>1</sup>, Hiroshi Ueno<sup>3</sup>, Seungju Seo<sup>1</sup>, Shigeo Maruyama<sup>1,4</sup>
matsuo@photon.t.u-tokyo.ac.jp

【緒言】ペロブスカイト太陽電池のエネルギー変換効率は最高 20%を越え、多くの実験室で 15-20%の変換効率を示す素子が作製されている.最近は安定性の課題の克服にも注目が集まって いる. spiro-MeOTAD は初期の研究からホール輸送層として用いられているが、酸素下 Li<sup>+</sup>TFSF によるドーピングが必要で、酸素は安定性に悪い影響を及ぼすという矛盾を抱えていた.

【実験】spiro-MeOTADからLi<sup>†</sup>@ $C_{60}$ への電子移動をUV-vis-NIR 吸収スペクトルにより評価した. spiro-MeOTAD:[Li<sup>†</sup>@ $C_{60}$ ]TFS $\Gamma$ 膜および spiro-MeOTAD:Li<sup>†</sup>TFS $\Gamma$ 膜の水蒸気透過率,酸素透過率を測定し,水や酸素に対するブロック特性を評価した. さらに接触角測定により, spiro-MeOTAD:[Li<sup>†</sup>@ $C_{60}$ ]TFS $\Gamma$ 膜の疎水性を評価した. spiro-MeOTAD:[Li<sup>†</sup>@ $C_{60}$ ]TFS $\Gamma$ および spiro-MeOTAD:Li<sup>†</sup>TFS $\Gamma$ をホール輸送層とする未封止のペロブスカイト太陽電池を作製し,水や酸素に対する短期の安定性を評価した. さらに,封止した素子を作製し,長期安定性を評価した.

【結果・考察】spiro-MeOTAD に  $\text{Li}^+@\text{C}_{60}$  を加えると、酸素なしで spiro-MeOTAD がドープされ、ラジカルカチオンになることを確認した.  $\text{Li}^+@\text{C}_{60}$  でドープした素子は水や酸素に対する高い安定性を示し、 $\text{Li}^+$ と酸素でドーピングした素子に比べ未封止で 10 倍の安定性を示した. 未封止大気下、70 時間くらいかけてエージングされて効率が上昇し、最高効率点から 400 時間もかけて効率を示さなくなるという他にはない挙動を示した(最高変換効率:18.5%). 封止した素子では実用化の目安とされる 1000 時間の連続照射下、効率低下 10%以内に収まり、高い安定性を示した.



**Figure.** Doping to spiro-MeOTAD through electron transfer from spiro-MeOTAD to  $\text{Li}^+@\text{C}_{60}$  giving radical cation of spiro-MeOTAD and  $\text{Li}^+@\text{C}_{60}$ , which facilitate high power conversion efficiency (18.5%) and stability (>1000 h, under continuous illumination), respectively.