Spin-dependent transport through n-Ge in vertical spin-valve devices

Osaka Univ.¹, Osaka Univ. CSRN ², °Takahiro Shiihara¹, Michihiro Yamada¹, Mizuki Honda¹, Shinya Yamada^{1, 2}, and Kohei Hamaya^{1, 2} E-mail: u413002f@ecs.osaka-u.ac.jp

Recently, we observed spin-dependent transport through p-Ge in vertically stacked CoFe/p-Ge/Fe₃Si spin-valve devices at room temperature (RT) [1]. However, the observed local spin signals (ΔR_S) were relatively small (~5 m Ω) [1] because of a very short spin relaxation time ($\tau_S \sim 0.4$ ps at RT), leading to a small spin diffusion length. On the other hand, we have so far clarified the spin relaxation time of n-Ge ($\tau_S \sim 0.2$ ns at RT) [2], much longer than that of p-Ge. Here we try to fabricate CoFe/n-Ge/Fe₃Si tilayer structures and to observe spin-dependent transport through the n-Ge layer in the vertically stacked devices.

By combining solid phase epitaxy (SPE) and molecular beam epitaxy (MBE) with Sb doping, we grew a $15 \sim 20$ -nm-thick Sb-doped Ge layer on Fe₃Si layer [3], followed by a 10-nm-thick CoFe layer. We confirmed streaky RHEED pattern for each process,

indicating two-dimensional epitaxial growth (Fig. 1).

Using the CoFe/Sb-doped Ge/Fe₃Si structure, we fabricated vertical spin-valve devices with a junction size of ~ 0.66 μ m², as shown in Fig. 2(a). Because symmetric and nonlinear current-voltage (*I-V*) curves were observed [Fig. 2(b)], we can judge that the tunneling conduction of electrons through the metal/n-Ge interfaces is achieved [3]. Figure 2(c) shows a representative magnetoresistance curve at RT with $I_{dc} = 0.2$ mA. A hysteretic feature depending on the magnetization states between parallel and anti-parallel can be observed. The value of ΔR_S is ~ 40 m Ω , which is one order of magnitude larger than that for p-Ge devices [1].

This work was partly supported by a Grant-in-Aid for Scientific Research (16H02333 and 17H06120) from JSPS.

[1] M. Kawano et al., Phys. Rev. Mater. 1, 034604 (2017).

[2] Y. Fujita et al., Phys. Rev. Appl. 8, 014007 (2017).

[3] T. Shiihara *et al.*, Semicond. Sci. Technol. **33**, 104008 (2018).

Fig.1: Surface RHEED observations of Fe₃Si, Sb-doped Ge and CoFe layers.

Fig. 2: (a) Schematic and (b) I-V curve and (c) magnetoresistance curve of a CoFe/Sb-doped Ge/Fe₃Si spin valve at RT.