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Spin transport in a strained SiGe alloy
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Spin transport in group-IV channels on a Si platform has been studied in detail [1,2]. Recently, we reported
pure-spin-current transport in a Ge-rich Sio.1Geos (SiGe) alloy [3] for developing group-IV semiconductor

spintronic devices. Here we report the first experimental demonstration of spin transport in a strained SiGe alloy
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Fig. 2(a) Comparison of electron mobility (u) between the
strained and relaxed SiGe layers. (b) Nonlocal spin signal of a
strained n-SiGe lateral spin valve at 50 K.

that electron mobility (u) is largely improved for
the strained SiGe layer.

Using the strained n-SiGe, we fabricated lateral spin valve (LSV) devices. Figure 2(b) shows a representative
spin signal (ARNL) detected by four terminal nonlocal measurements at 50 K. The magnitude of ARnL (~ 0.95 Q)
for the strained SiGe layer is markedly larger than that (~ 0.002 Q) in the relaxed one in Ref. [3]. I will discuss the

effect of the strain on electrical properties, spin transport, and spin relaxation in SiGe [4].
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