Electron spin lifetime and momentum lifetime in Si two-dimensional accumulation channels: Demonstration of spin MOSFETs at room temperature

Shoichi Sato¹, Mitsuki Ichihara¹, Masaaki Tanaka^{1,2}, and °Ryosho Nakane^{1,3}

¹Dept. of Electrical Eng. and Information Systems, ²Center for Spintronics Research Network (CSRN), ³Institute for Innovation in International Engineering Education, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

Silicon is known as a suitable material for the channel of spin functional semiconductor devices [1] owing to its long electron spin lifetime τ_S . However, it was reported that τ_S in Si two-dimensional (2D) channel is shorter than that in bulk Si materials [2,3], which is critical for device applications. To clarify the origin of the reduction in τ_S , we have experimentally investigated the relation between the electron spin lifetime τ_S and momentum lifetime τ in a 2D accumulation channel of Schottky-barrier spin metal-oxide-semiconductor field-effect transistors (spin MOSFETs) [4].

Figure 1 shows our spin MOSFET structure examined in this study, which has Fe/Mg/MgO/Si Schottky-tunnel junctions at and source/drain 15-nm-thick the a non-degenerated Si channel with a phosphorus donor doping concentration $N_{\rm D}$ of 1×10^{17} cm⁻³. The device with various channel lengths L_{ch} (= 0.3 - 10 µm) show clear spin-valve signals at 295 K, as shown in Fig. 2(a). We have estimated the spin diffusion length λ_s in various gate voltages $V_{\rm GS}$ (= 40 – 100 V) from the decay rate of the spin-valve signals (Fig. 2(b)). From the experimental results of a Hall-bar-type MOSFET device (not shown) and self-consistent calculations using Poisson's and Schrödinger's equations [5], τ and the electron diffusion coefficient $D_{\rm e}$ in the 2D accumulation channel were estimated. Using the relation $\lambda_{\rm S} = (D_{\rm e}\tau_{\rm S})^{0.5}$, $\tau_{\rm S}$ was estimated and plotted as a function of the effective gate electric field E_{eff} [5] in Fig. 3. In the same figure, the value $\tau \times 14000$ is also plotted by the red curve. We found that the spin-flip probability $\tau/\tau_{\rm S}$ is almost constant $(\sim 1/14000)$ and unchanged by the gate voltage. This indicates that the Elliott-Yafet mechanism [6] is dominant in the Si 2D electron accumulation channel, and that both the spin-flip rates per one phonon scattering event and per one surface roughness scattering event are the same.

Fig. 1 Schematic illustration of our spin MOSFET and the measurement setup.

Fig. 2 (a) Spin-valve signal obtained in the sample with $L_{\rm ch} = 0.4 \ \mu m$ and $V_{\rm GS} = 100 \ V$. (b) $L_{\rm ch}$ dependence of the spin-valve signal with various gate voltages $V_{\rm GS} = 40 - 100 \ V$.

Acknowledgements This work was partially supported by CREST of JST (No. JPMJCR1777), and Spintronics Research Network of Japan.

References [1] S. Sugahara and M. Tanaka, Appl. Phys. Lett. **84**, 2307 (2004). [2] T. Sasaki, et al., Phys. Rev. Appl. **2**, 034005 (2014). [3] J. Li and I. Appelbaum, Phys. Rev. B **84**, 117202 (2011). [4] S. Sato et al., Phys. Rev. B. **99**, 165301 (2019). [5] S. Takagi et al., Jpn. J. Appl. Phys. **37**, 1289 (1998). [6] R. J. Elliott, Phys. Rev. **96**, 266 (1954).