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Hamiltonian ray tracing of compressed lens via transformation-optics
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1. Introduction

Today’s technology is driving the need for lighter, sim-
pler, and more compact optical devices [1]. As part of that,
a design method using the transformation optics is actively
researched. The transformation optics is a new paradigm
for the science of light that is enabled by recent develop-
ments in metamaterials [2]. The material properties de-
signed by the transformation-optic method can be support-
ed by the fast advance in the field of metamaterials. By
combining metamaterial with Hamiltonian optics, we pro-
pose an unprecedented type of lens for an imaging system.
This transformation-optic designed lens is devised for a
compact imaging system. In this paper, we study the optical
characteristics of transformation-optic compressed lens
which have properties difficult to find in nature.

2. Design of compressed lens
It is a remarkable fact that Maxwell’s equations under
any coordinate transformation can be written in an identical
“Cartesian” form if simple transformations are applied to
the materials, the fields, and the sources [3, 4].
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Fig.1. Schematic of lens compression

In Fig. 1, the shaded blue section is an aspherical lens sur-
face. We have to spread this surface to Z  to make it flat
and we transform the coordinates to define a new coordi-
nate system. Next, we need to calculate the permittivity and
permeability function for each region. Z , a length of a
perpendicular drawn from a point on an aspherical surface
is given by equation (1).
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where Y and K are perpendicular height to the optical
axis and conic constant. A, denotes an aspheric surface
coefficient and R denotes radius of curvature of the
aspherical surface. Let us consider the coordinate trans-
formation from (x,y,z) to (X,y’,z') described by
equation (2) and (3).
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3. Hamiltonian and ray equations

The photon has an implicit relationship between its position
and momentum. Therefore, if only the invariant function is
defined in the ray-path section, it can be considered Hamil-
tonian. The Hamiltonian, which will be used for generating
the ray paths has fundamentally the planar wave dispersion
relation [5], as expressed in equation (3).
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where f(X) is some arbitrary function of position. The
equations of motion are
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where 7 parameterizes the paths. The above, pair of cou-
pled, the first-order differential equations for ray-tracing
can be solved by the fourth-order Runge-Kutta method.

4. Conclusion

In this paper, we demonstrate that the transformation optic
design method combined with metamaterial can make un-
usual optical lens possible. This lens is expected to contrib-
ute to a much compact imaging system.
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