## Magnetoresistance in an α-RuCl<sub>3</sub>/Pt

## ICR, Kyoto Univ.<sup>1</sup>, Tokyo Institute of Technology<sup>2</sup>, CSRN, Osaka Univ.<sup>3</sup>, OYuushou Hirata<sup>1</sup>, Hidekazu Tanaka<sup>2</sup>, Nobuyuki Kurita<sup>2</sup>, Takahiro Moriyama<sup>1</sup>, Teruo Ono<sup>1, 3</sup> Email: yuushou.hirata.33x@st.kyoto-u.ac.jp

Recently an  $\alpha$ -RuCl<sub>3</sub> has emerged as a primal candidate for hosting a Kitaev Quantum Spin Liquid [1] and has been attracting great attentions. In this study, we investigated the magnetoresistance [2] in Pt/ $\alpha$ -RuCl<sub>3</sub> bilayers at low temperatures where the Kitaev QSL state and zigzag antiferromagnetic state [3] are expected to emerge.

We transferred an  $\alpha$ -RuCl<sub>3</sub> flake on a SiO<sub>2</sub> substrate by exfoliating with the Scotch tape and then deposited 3 nm-thick Pt on top of it. The bilayer was patterned into a 50 µm wide Hall bar using ebeam lithography technique. We performed spin transport measurements at different temperatures between 3 and 75 K with a rotating magnetic field H = 9 T. The rotation angles  $(\alpha,\beta,\gamma)$  and the measurement configurations are defined in Fig. 1(a). Fig. 1(b) shows the temperature dependence of magnetoresistance normalized to the base corresponding resistance  $(\Delta R_{xx}/R_{xx} = \Delta \rho_{xx}/\rho_{xx})$  obtained for the three field rotations. Below 50 K,  $\Delta \rho_{xx}/\rho_{xx}$  increase with decreasing temperature for both - $\beta$  and - $\gamma$  rotations. In the presentation, we will discuss the temperature dependence of  $\Delta \rho_{xx}/\rho_{xx}$  with respect to the temperature dependence of magnetic state of an  $\alpha$ -RuCl<sub>3</sub>.



Fig. 1 (a) The measurement configurations. (b) Temperature dependence of  $\Delta \rho_{xx}/\rho_{xx}$  obtained at 9 T. Inset: the angular dependence of the longitudinal resistance  $Rxx(\alpha)$  at 5 K.

- [1] A. Kitaev, Ann. Phys. **321**, 2 (2006).
- [2] H. Nakayama et al., Phys. Rev. Lett. 110 206601 (2013).
- [3] R. D. Johnson et al., Phys. Rev. B 92 235119 (2015).