垂直磁化した Co/CoOx 系における交換バイアスの電界効果

Electric Field Effect on Exchange Bias in Perpendicularly-Magnetized Co/CoOx System

東大物工¹, 阪大産研², 阪大 CSRN³ ^O平井 孝昌^{1,2}, 小山 知弘^{2,3}, 千葉 大地^{2,3}

The Univ. of Tokyo¹, ISIR, Osaka Univ.², CSRN, Osaka Univ.³

°Takamasa Hirai^{1,2}, Tomohiro Koyama^{2,3}, Daichi Chiba^{2,3}

E-mail: thirai@g.ecc.u-tokyo.ac.jp

Electric field (EF) control of exchange bias (EB) has been proposed for a fast and ultralow magnetization manipulation method in spin-valve type of spintronic devices. Previous reports show the modulation of EB by EF application using ferromagnet (FM)/multiferroic antiferromagnet (AFM) heterostructure. In this multiferroic system, AFM spin is directly manipulated by EF due to magnetoelectric (ME) coupling between ferroelectricity and antiferromagnetism, resulting in the modulation EB [1]. In this work, we investigate the EF effect on EB in solid state capacitor structure with Co/CoO_x structure, where the CoO_x is insulator and non-multiferroic AFM below its Néel temperature.

Ta(3.3 nm)/Pt(3.0 nm)/Co(1.0 nm) bottom electrode was deposited on a thermally oxidized Si substrate by rf-sputtering. The sample was exposed to the air for 10 min to oxidize the surface of Co. As a gate insulator, a 45-nm-thick HfO₂ was deposited at 150°C by an atomic layer deposition method. Finally, Cr/Au counter gate electrode were formed by lift-off process. Anomalous Hall measurement by sweeping out-of-plane magnetic field was conducted for evaluating magnetic properties. At 300 K, clear perpendicular easy axis was observed. After the field cooling was performed, the increase in coercivity (H_c) and hysteresis loop shift can be observed, indicating that the EB effect is induced by the interfacial

exchange coupling between Co and CoO_x spins. The blocking temperature is about 200 K, which is lower than Néel temperature of bulk CoO. Figure 1 shows H_c and the magnitude of EB (H_{EB}) at 50 K as a function of gate voltage (V_G). Both of them are monotonically and reversibly changed by gating. There is no ME effect in the CoO_x and the sign of H_{EB} modulation cannot be explained by voltage-driven redox reaction. Thus, it can be concluded the modification of the interfacial electronic state at Co/CoO_x interface is the possible mechanism of H_{EB} modulation.

Figure 1. H_c and H_{EB} as a function of V_{G} .

This work was partly supported by JSPS KAKENHI (Grant No. 18J10734), and Spintronics Research Network of Japan.

[1] Y. Chu et al., Nat. Mater. 7, 478 (2008). [2] D. Gilbert et al., Nat. Commun. 7, 11050 (2016).