Spin-dependent Tunneling in the Plasma Oxidized Cr₂O₃ Barrier Magnetic Tunnel Junctions

^oTomohiro Ichinose¹, Kelvin Elphick², Atsufumi Hirohata², and Shigemi Mizukami^{1, 3, 4}

WPI-AIMR, Tohoku Univ.¹, Dept. of Elec. Eng., Univ. of York², CSIS, Tohoku Univ.³, CSRN,

Tohoku Univ.⁴

E-mail: tomohiro.ichinose.e4@tohoku.ac.jp

There has been growing interest in the antiferromagnetic spintronics due to the high-speed operation, no stray fields, and so on. [1] The magnetic tunnel junctions (MTJs) with the Cr_2O_3 barrier would show the intriguing spin-dependent transport phenomena such as magnetoresistance (MR) effects based on antiferromagnetic and/or magnetoelectric nature of the Cr_2O_3 . [2] However, it has not been addressed to the characterization of the ultrathin Cr_2O_3 films to date. In this work, the spin-dependent transport properties in the MTJs with a Cr_2O_3 barrier were investigated.

We fabricated the samples by a sputtering technique. The plasma oxidation was performed to form the Cr_2O_3 barrier using the 90° off-axis cathode. The structural property of Si/SiO₂/Ta(5)/Ru(20)/Co(4)/Cr₂O₃(20)/Ta(5) was characterized by using x-ray diffraction (XRD). The MTJ stack was composed of Si/SiO₂/Ta(5)/Ru(20)/Co(4)/Cr₂O₃(2)/Co(3)/Ir₂₂Mn₇₈(10)/Ta(3)/Ru(7) (thickness in nm). The microfabrication of the MTJs were carried out using the photolithography and Ar ion milling, followed by post-annealing at 523 K under a magnetic field of 2 kOe. The transport properties were measured using the 4-terminal prober and the physical property measurement system.

The XRD $2\theta/\omega$ scans showed the Cr₂O₃ (006) peak although the (006) diffractions in the corundum oxides were weak in contrast to other peaks, indicating high orientation of Cr₂O₃ to the (001) direction. For instance, the intensity ratio between (006) and (104) diffractions, $I_{(006)}/I_{(104)}$, in the Cr₂O₃ powder sample was 0.15. On the contrary, sputtered Cr₂O₃ showed the $I_{(006)}/I_{(104)} \sim 8.8$. The plasma oxidation for Cr₂O₃ improved the dielectric breakdown strength from 0.3 V to 1 V, indicating the reduction of the oxygen vacancies in Cr₂O₃. The MTJs with the plasma oxidized Cr₂O₃ barrier showed the tunnel magnetoresistance (TMR) ratio of 1% (4%) at 300 K (10 K). As the temperature decreased to < 100 K, the TMR curves showed the increase of coercive fields and anisotropy in the Co layer, indicating antiferromagnetic order of Cr₂O₃.

This work was supported in part by KAKENHI (JP18H05947) and JST CREST (No. JPMJCR17J5).

References

- [1] V. Baltz et al., Rev. Mod. Phys. 90, 015005 (2018).
- [2] K. Wang et al., Sci. Rep. 5, 15498 (2015).