# Fabrication of fully epitaxial Co<sub>2</sub>Fe(Ga,Ge)/Ge/CoFe trilayer structures

<sup>o</sup>Taichiro Yoshida, Masaki Inoue, and Tetsuya Uemura Graduate School of Information Science and Technology, Hokkaido University Email: taichiroyoshida@ist.hokudai.ac.jp

## 1. Introduction

A vertical structure consisting of F/SC/F, where F is a ferromagnetic material and SC is a semiconductor, has attracted much interest for novel semiconductor-based spintronic devices, such as a vertical-type spin transistor or magnetoresistive devices, similar to magnetic tunnel junction or giant magnetoresistance (GMR) devices. However, it is not easy to fabricate a single crystalline semiconductor material on a ferromagnetic metal, there has been very few reports on the fabrication of such structures: Fe<sub>3</sub>Si/Ge/CoFe [1] and Co<sub>2</sub>FeSi/Ge/Co<sub>2</sub>Fe/Si [2]. Recently, relatively high MR ratios of 82% at room temperature was reported in Co<sub>2</sub>Fe(Ga,Ge) (CFGG)–based GMR device [3], indicating that CFGG is a highly spin-polarized ferromagnetic material. Given these background, the purpose of the present study is to fabricate a fully epitaxial CFGG/Ge/CoFe trilayer structure.

## 2. Experimental method

A vertically stacked structure consisting of (from substrate side) CFGG (30 nm)/Ge (5 nm)/CoFe (8 nm) was grown by magnetron sputtering on a MgO-buffered MgO(001) substrate. A CFGG layer was grown at room temperature (RT) and subsequently annealed *in situ* at 550 °C. Then, a Ge layer was grown at various

temperatures ranging from RT to 400°C. After cooling the substrate down to RT, a CoFe layer was grown on the Ge layer. The structural property of CFGG/Ge/CoFe trilayer was evaluated by reflection high energy electron diffraction (RHEED), and the magnetic properties of top CoFe was characterized by magneto optical Kerr effect (MOKE) measurement.

### 3. Results and Discussion

A clear streak RHEED pattern was observed for the CFGG layer annealed at 550°C (*not shown*). Figure 1 shows RHEED patterns of the Ge layer grown on CFGG at different growth temperatures ( $T_{sub}$ ). With increasing  $T_{sub}$ , the crystalline quality of Ge was gradually improved. At  $T_{sub}$  lower than 300°C, the halo pattern was observed, indicating that the Ge is amorphous. At  $T_{sub} = 400$ °C, on the other hand, a clear streak pattern was observed [Fig. 1(d)], indicating that the Ge is epitaxially grown on CFGG and is single crystalline. Moreover, top CoFe was also epitaxially grown on the Ge with  $T_{sub} = 400$ °C, and showed clear ferromagnetic property, as shown in Fig. 2.

### Reference

- [1] M. Ikawa et al., J. Cryst. Growth 468, 676 (2017).
- [2] M. Kawano et al., J. Appl. Phys. 119, 045302 (2016).
- [3] J. W. Jung et al., Appl. Phys. Lett. 108, 102408 (2016).

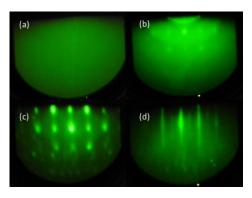



Fig. 1. RHEED observation of Ge grown at (a) RT, (b) 300°C, (c) 350°C, and (d) 400°C.




Fig. 2. MOKE signal for CFGG/Ge/CoFe trilayer with  $T_{sub} = 400^{\circ}$ C.