Dzyaloshinskii-Moriya interaction and damping-like spin-orbit torque in Co/Gd/Pt ferrimagnetic multilayers

Tomoe Nishimura¹, Dae-Yun Kim^{2,3}, Duck-Ho Kim¹, Yune-Seok Nam², Yong-Keun Park^{2,3}, Yoichi Shiota¹, Takahiro Moriyama¹, Byoung-Chul Min³, Sug-Bong Choe², and Teruo Ono^{1,4} ¹ Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan ²Department of Physics and Institute of Applied Physics, Seoul National University, Seoul, 08826, Republic of Korea

³Center for Spintronics, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
⁴Center for Spintronics Research Network (CSRN), Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan E-mail: nishimura.tomoe.74c@st.kyoto-u.ac.jp

Dzyaloshinskii–Moriya interaction (DMI) and spin–orbit torque (SOT) are essential ingredients in spintronics. These effects are known to be a consequence of the inversion symmetry breaking, and main platforms for the investigation of them have been interfaces of heavy-metal/ferromagnet bilayers where the inversion symmetry are locally broken. We investigated DMI and SOT in Co/Gd/Pt ferrimagnetic multilayers in which the inversion symmetry is broken throughout whole structure. For this study, Ta(5)/Pt(3)/[Co(0.5)/Gd(1)/Pt(1)]_N/Ta(3) [unit : nm] ferrimagnetic films were prepared on thermally oxidized Si wafers at room temperature by using direct current magnetron sputtering. Here, *N* denotes the repetition number of Co/Gd/Pt trilayers and were varied from 1 to 5. All films were confirmed to have perpendicular magnetizations with square hysteresis loops. DMI and damping-like SOT were evaluated from current-assisted field-driven DW motion by using magneto-optical Kerr effect microscope [1]. As shown in Figs. 1(a) and 1(b), DMI constant *D* and spin Hall angle θ_{SH} are found to be almost constant against *N*. Detailed discussion of these observations will be given in the presentation.

Figure 1(a) DMI constant D and (b) spin Hall angle θ_{SH} with respect to the repetition number N.

^[1] D.-Y. Kim et al. NPG Asia Mater. 10, e464 (2018).