ミスト CVD-AIOx 成膜における H₂O 添加の役割

Role of water additive in the synthesis of AlO_x by mist-CVD

¹埼玉大理工研,²東洋大 BNERC 研 Arifuzzaman Rajib^{1(D1)}, 黒木宇紀¹, 今井滉貴¹, 黒須俊治², 鵜飼智文², 藤井康彦², 徳田正秀², 花尻達郎², 石川良¹, 白井肇¹

¹Saitama Univ., ²Toyo Univ., A. Rajib¹, T. Kuroki¹, K. Imai¹, S. Kurosu², T. Ukai², Y. Fujii²,

M. Tokuda², T. Hanajiri², R. Ishikawa¹, H. Shirai¹

rajib.apee.38@gmail.com

1. 序論:前回までに帯電ミストによる導電性高分子 PEDOT:PSS 成膜における溶媒の役割 についてダイオード,トライオード電極構造を利用して各種溶媒を利用して,溶媒の物性と ミストの輸送形態、溶媒の物性と膜質との関連を報告した。今回はミスト CVD に展開し Al(acac)₃/MeOH/H₂O を出発原料として AlO_x 成膜を検討した。特に成膜時における水の役割 を検討した結果を報告する。

2. 実験:Fig.1 は装置概要を示す。Al(acac)₃を異なる MeOH/純水混合比の条件で3 MHz の 振動子上に設置し、キャリガスには N₂を用いた。成膜は N₂流量、基板温度、基板の位置、 成膜時間を変数として結晶 Si 上に成膜した。特に AlO_x成膜における水添加の役割を調査す るためミスト輸送時および成膜表面での挙動を高速カメラ、粒度分布および AlO_xの水 /MeOH ミスト照射による AlO_x 膜質変化について顕微鏡観察、FTIR、分光エリプソメトリ ー、XPS により評価した。更にテクスチャーSi および Si ナノピラー〈~50nm 幅、深さ:~ 1µm〉構造内へのミスト付着形態を評価した。

3. 結果:Fig. 2 は N₂(500/500sccm), 基板温度 350℃で MeOH/水混合比に対する Al₂O₃の膜 厚を示す。成膜速度は水添加量の増大に伴い減少した。また FTIR から 3000~3600 cm⁻¹ 付 近の AlOH 結合に起因する赤外吸収が減少し, 300~400 cm⁻¹ 付近の AlO₆, AlO₄ に起因する吸 収が増大した。更にミストのガラス管出口付近の輸送状態を高速カメラで観察した。その結 果水添加量の増大とともにミスト流速は減少した(Fig. 3)。以上の結果は、水添加がミスト 生成・輸送速度を抑制していることを示唆する。作製した AlO_x への水および MeOH/水ミス トの照射によるミスト流速と表面改質効果および Si ナノピラー内への輸送形態について考 察した結果を報告する。

Fig.1 ミスト CVD 装置.

Fig. 2 FTIR スペクトル.

Fig. 3 MeOH/H₂O 流量比に対 するミストの高速カメラ像.