GaN テンプレート基板上の自然酸化膜処理が及ぼす ミスト CVD 法による ε-Ga2O3 薄膜成長への影響 Effect of the treated native oxides of GaN templates on ε-Ga2O3 epitaxial growth by mist chemical vapor deposition 京工繊大¹, o(M1)伊藤雄祐¹, (D)田原大祐¹, (M2)新田悠汰¹, 西中浩之¹, 吉本昌広¹

Kyoto Inst. of Tech.¹, OYusuke Ito¹, Daisuke Tahara¹, Yuta Arata¹,

Hiroyuki Nishinaka¹, and Masahiro Yoshimoto¹

E-mail: m9621006@edu.kit.ac.jp

超ワイドバンドギャップ半導体として知られている酸化 ガリウム(Ga₂O₃, Eg = 約 5.0 eV)は、5 つの結晶構造(α , β , γ , δ 、 ϵ)を持つ結晶多形である[1]。その中でも ϵ -Ga₂O₃ は準安 定相であり、強誘電体特性や自発分極を示すなどの特性か ら近年注目を集めている[2][3]。

本発表では、GaN テンプレート基板上の自然酸化膜に対して、BHF洗浄、酸素プラズマ処理、アニール処理を施し、 その上にミストCVD法を用いてε-Ga₂O₃薄膜成長を試みた。

GaN テンプレート基板上に各処理を施し、その表面を XPS による O 1s の光電子スペクトルの測定を行った(Fig. 1)。 BHF 洗浄では、XPS 強度が減少しており自然酸化膜が除去 されている。酸素プラズマ処理やアニール処理を行うと、 XPS 強度の増加に加え、結合エネルギーの低エネルギー側 へのピークシフトが観察されたことから、自然酸化膜とは 結合状態の異なる酸化膜が形成されている。

次に、上記のような処理を施した GaN テンプレート基板 上に ϵ -Ga₂O₃薄膜を成長させた。XRD 20- ω 測定結果を Fig. 2 に示す。未処理、BHF 洗浄、酸素プラズマ処理においては、 ϵ -Ga₂O₃(004)の回折ピークが観察された。アニール処理にお いては、Ga₂O₃の最安定相の β -Ga₂O₃(-402)の回折ピークが観 察された。XPS の結果は酸素プラズマ処理とアニール処理 はほぼ同様であったが、XRD 解析よりそれぞれ ϵ 、 β 相と異 なる Ga₂O₃が得られた。Ga₂O₃の結晶成長には XPS による 表面状態の評価だけではなく、結晶構造の評価も重要であ ることを示している。GaN 上の自然酸化膜への各処理と、 Ga₂O₃の成長の詳しい検討と考察については当日発表する。 [1] R. Roy *et al.*, J. Am. Chem. Soc. 74, (1952) 719. [2] F. Mezzadri *et al.*, Inorg. Chem. 55, (2016) 12079. [3]M. B. Maccioni *et al.*, Appl. Phys. Express 9, (2016) 041102.

Fig. 2. XRD images of Ga_2O_3 thin films grown on GaN templates after treatments of (a)no treatment, (b)BHF cleaning, (c)BHF cleaning and O_2 plasma and (d)BHF cleaning and annealing