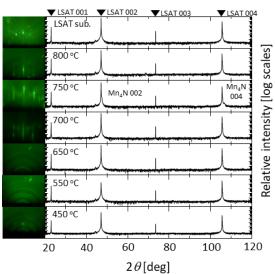
Optimization of growth temperature of Mn₄N thin films on LSAT(001) grown by molecular beam epitaxy


Univ. of Tsukuba¹, °Taku Hirose¹, Taro Komori¹, Takashi Suemasu¹

E-mail: s1920336@s.tsukuba.ac.jp

[Introduction] Mn₄N is a promising material for current induced domain wall motion devices because of its perpendicular magnetic anisotropy (PMA) with a large uniaxial anisotropic constant ($K_{\rm u} \sim 10^2 \text{ kJ/m}^3$) and a small spontaneous magnetization ($M_{\rm S} \sim 100$ kA/m) [1]. Besides, it consists of only light and abundant elements. We recently achieved an ultrafast domain wall motion ($v_{DW} = 900$ m/s) at a current density of approximately $10^{12}\ \text{A}/\text{m}^2$ for Mn_4N nanowires driven by only spin transfer torque without any external magnetic field [2]. We anticipate that the in-plane tensile distortion of Mn₄N films causes the PMA [3]. (La, Sr)(Al, Ta)O₃ (LSAT) has a larger lattice constant than Mn₄N, and thus we expect in-plane compressive distortion in Mn₄N films when grown on an LSAT substrate. However, no group has reported the epitaxial growth of Mn₄N films on LSAT(001) substrates.

[Experiment] 30-nm thick Mn₄N films were grown on LSAT(001) substrates by molecular beam epitaxy (MBE) using a solid Mn and a radio-frequency N₂ plasma at various substrate temperatures (T_s) of 450-800°C. After the growth, Ti cap layers were deposited in-situ on the Mn₄N films to prevent oxidation. The crystalline quality of grown films was evaluated by reflection high-energy electron diffraction (RHEED) and out-of-plane and in-plane X-ray diffraction (XRD) measurements. The film thickness was evaluated by X-ray reflectivity. Magnetic properties were measured by vibrating sample magnetometer at room temperature (RT). Anomalous Hall effect (AHE) measurement was performed by physical properties measurement system at RT to evaluate $K_{\rm u}$.

[Result & Discussion] Streaky RHEED patterns and Kikuchi lines along LSAT[100] azimuth were observed for the samples grown at $T_{\rm S} = 700-800$ °C in Fig. 1. On the other hand, the samples grown at T_s < 650 °C showed the ring patterns, indicating poly-crystalline structures in their surfaces. Figure 1 also shows the out-of-plane XRD profiles. Epitaxial growth of Mn₄N was confirmed for samples grown at $T_{\rm S} = 700-800$ °C. The presence of tensile distortion was confirmed even in Mn₄N films on LSAT(001) from out-of-plane and in-plane (not shown) XRD patterns. Figure 2 shows the T_S dependence of M_S and $K_{\rm u}$. The samples grown at $T_{\rm S}$ = 700–800 °C showed PMA. Based on these results, we succeeded in the epitaxial growth of highly c-axis oriented Mn₄N films with PMA on LSAT(001) substrates at $T_s = 700, 750$ and 800 °C. Especially, K_u becomes the largest at T_s =

750 °C. We plan to investigate the relationship between K_u and the ratio of lattice constant c/a.

Fig.1. RHEED patterns along LSAT[100] azimuth (left) and ω -2 θ XRD profiles (right) of the samples on LSAT(001) at $T_{\rm S}$ = 400–800 °C.

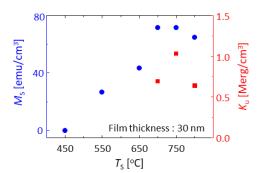


Fig. 2. T_S dependence of M_S and K_u of Mn₄N films on LSAT(001) substrates at RT.

[Acknowledgments]

Magnetization measurements were performed with the help of Professor H. Yanagihara of Univ. of Tsukuba. AHE measurements were performed with the help of Associate Professor T. Koyano of Cryogenics Division of Univ. of Tsukuba. LSAT substrates were given by Dr. Vila and his colleagues in Grenoble, France.

[Reference]

- [1] T. Komori et al., J. Cryst. Growth, 507, 163 (2019).
- [2] T. Gushi et al., arXiv: 1901.06868
- [3] Y. Yasutomi et al., J. Appl. Phys., 115, 17A935 (2014).