中心対称性の破れた 2 次元層状物質の圧電特性

Piezoelectric characteristics of non-centrosymmetric two-dimensional materials 東大工¹, 名大理² ^O東垂水 直樹¹, 川元 颯巳¹, 梅田 雅也¹, 北浦 良², 長汐 晃輔¹ UTokyo¹, Nagoya Univ.² ^oN. Higashitarumizu¹, H. Kawamoto¹, M. Umeda¹, R. Kitaura², K. Nagashio¹ E-mail: higashitarumizu@ncd.t.u-tokyo.ac.jp

非点対称性かつ柔軟性の高い結晶構造を持つ SnS は、 MoS_2 と比較してより高い圧電定数が理論的に予測されていることから、環境発電素子への応用が期待されている^[1,2]. 分極を打ち消す方向で積層されるため、圧電特性は奇数層のみで発現し単層で最大化するが、単層における低いパワー密度(~10² nW/cm²)は 2D 圧電素子共通の課題である^[1,3]. 我々は、らせん成長等の非点対称性の制御技術を応用し分極方向を揃えた多層構造(Fig. 1)を作製することで実用上要求されるパワー密度 10² μ W/cm²級の実現を目指している. 今回既に圧電特性が実証され、さらに中心対称の破れた成長が可能な MoS₂をモデル材料として選択した. 単層 MoS₂における圧電特性は、静的ひずみ印加時に圧電効果で生じたイオン分極により金属電極/MoS₂界面での Schottky barrier height (SBH) が S/D で非対称に変化するため、 I_D-V_D の非対称性として検出される^[1]. しかしながら、再現性に

乏しく現時点で限定されたグループからの報告 に留まっている. MoS₂の SBH に関しては,金属 蒸着では MoS₂ への欠陥導入等により SBH 制御 が難しく,金属電極転写によるファンデルワール ス界面形成により制御可能であると報告されて いる^[4].そこで本研究では,金属電極転写法を用 いた SBH 界面制御を適応し,非点対称性を制御 した多層構造での圧電特性の向上を目指した.

化学気相成長法を用いて SiO₂/Si 基板上に成 長した 3R/2H 構造の多層 MoS2 を原子レベルでフ ラットな表面をもつマイカ基板上に転写した (Fig.1). マイカ基板は膜厚を 10~50 µm に調整す ることで柔軟性とハンドリング性を両立した. 膜 厚2µmのPMMAによって保持した Au 電極を転 写装置を用いて2層 MoS2上に転写した(Fig. 2). このデバイスをマイカ基板ごと膜厚 350 µm の PET 基板に貼り付け, 万力を用いてひずみを静的 に印加後,真空中で電気測定を行なった.3R/2H 構造の2層 MoS2の2端子測定の結果を Fig.3に 示す. 圧縮ひずみを印加したとき, 3R-2 層 MoS₂ は VDの正・負側で電流値は非対称に変化した. 圧電特性の消失した 2H-2 層 MoS2 ではバンドギ ャップがひずみによって変化する圧抵抗効果に よる抵抗値の変化のみを反映し ID-VD 特性は対 称的に変化するが、3R 構造では圧電効果で生じ たイオン分極により SBH が S/D で非対称に変化 することで極性をもった電気特性の変化が観察 された.以上より、2D 材料の圧電特性はバルク の効果である圧抵抗効果とは異なり界面の効果 であり,静的な電気特性で容易に評価することが 可能であると言える. さらに多層化した非点対称 な構造を作製することで,環境発電材料としての 性能向上が期待される.

[1] W. Wu et al., Nature 514, 470 (2014). [2] R. Fei et al., Appl. Phys. Lett. 107, 173104 (2015). [3] J.-H. Lee et al., Adv. Mater. 29, 1606667 (2017). [4] Y. Liu et al., Nature 557, 696 (2018).

Fig. 3 (a) I_D – V_D curves of 3R/2H bilayer-MoS₂ with external strain. (b) Band diagrams of metal/MoS₂ with strain.