リン(P)ドーピングした鉄シリサイドの PL 発光特性

Photoluminescence properties of P-doped β-FeSi₂ films 神奈川産技総研¹, 東工大物質理工² 〇秋山賢輔^{1, 2}, 野島咲子¹, 高橋 亮¹, 舟窪浩² ¹Kanagawa Inst. Ind. Sci. Tech., ² Tokyo Institute of Technology, ^OKensuke Akiyama, Sakiko Nojima, Ryo Takahashi and Hiroshi Funakubo, E-mail: akiyama@kanagawa-iri.jp

【緒言】 シリサイド半導体の一つである鉄シリサイド半導体(β-FeSi₂)は、1.55μm 帯域での発光(フ オトルミネッセンス(PL)、エレクトロルミネッセンス(EL))が報告され、その実用化には発光効率の向 上が求められている。前回の発表において、我々は窒素(N)をドーピングしたβ-FeSi₂において PL 発 光強度の温度消光特性の改善、及び 290K までの発光を報告し、これが結晶内の非輻射再結合中心密度 が低減、励起子結合エネルギーの増大化に起因することを報告した[1]。この N ドーピングの効果は、 電気陰性度の大きさに起因すると考えられる、本発表では、有機金属気相成長(MOCVD)法で合成した β-FeSi₂において、P をドーピングすることで PL 発光の温度消光特性が改善され PL 発光強度の増大化 が観察されることを報告する。

【実験条件】 MOCVD 法による β -FeSi₂ 薄膜の作製条件はこれまでの報告[2]と同様であるが、モノシ ラン(SiH₄)、及びカルボニル鉄[Fe(CO)₅]を出発原料に用いて膜厚 50±5nm の銀(Ag) 層を導入した Si(111)基板上に成長させた。Si(111)基板表に Ag 層を 3×10⁻⁶ Torr の真空中で室温にて堆積させた後に、 750℃の基板温度にて約 150nm の β -FeSi₂ 薄膜作製を行った。 β -FeSi₂ 薄膜の作製中にホスフィン (PH₃) ガスを同時に供給することで P のドーピングを行った。

【結果】 図1に MOCVD 堆積膜における PH₃ ガスの SiH₄ ガス供給量比【(PH₃)/{(SiH₄)+(PH₃)}】による X線回折 θ -2 θ スキャン・プロファイル変化を示す。(PH₃)/{(SiH₄)+(PH₃)} ≦0.009 以下の PH₃ ガス供給条件において、(101)/(110)、及び(100)配向を有する β -FeSi₂薄膜の成長が確認された。(PH₃)/{(SiH₄)+(PH₃)}の増加に伴い(202)/(220)、及び(800)面からの回折ピークの強度が低下し、結晶性の低下が示唆された。図 2 にそれぞれの(PH₃)/{(SiH₄)+(PH₃)}供給条件で作製した β -FeSi₂薄膜からの PL スペクトルを示す。255K において 0.82eV 付近にピークをもつ A バンド発光は、(PH₃)/{(SiH₄)+(PH₃)}が 0.002 のガス供給条件において最大となり、ドーピングしない試料の約 10 倍の発光強度を得た。

【参考文献】 [1] 秋山, 高橋, 松本, 舟窪, 19p-P9-3, 第 65 回応用物理学会春季学術学会. [2] K. Akiyama, S. Ohya and H. Funakubo, Thin Solid Films, **461** (2004) 40.

Fig.1 θ -2 θ scan profiles for the films on Si(111) substrates with 50-nm-thick Ag layer, which were deposited under the condition of (PH₃)/{(SiH₄)+(PH₃)}= (a) 0, (b) 0.00004, (c) 0.002 and (d) 0.009.

Fig. 2 PL spectra for the β -FeSi₂ films on Si(111) substrates with 50-nm-thick Ag layer, which were deposited under the condition of (PH₃)/{(SiH₄)+(PH₃)}= (a) 0, (b) 0.00004, (c) 0.002 and (d) 0.009.