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1. Introduction

An optical vortex [1] carries an annular intensity profile
and an orbital angular momentum, characterized by a topo-
logical charge ¢, owing to its helical wavefront, and it pro-
vides us a variety of potential research opportunities, in-
cluding chiral fabrications [2-4], high-speed communica-
tions and scanning microscopes with a spatial resolution
beyond the diffraction limit. The above-mentioned applica-
tions require strongly frequency versatility of the vortex
light sources, thus, a THz vortex source will offer entirely
new fundamental sciences and advanced technologies for
THz photonics.

To date, we have successfully developed THz vortex
sources by employing a Tsurupica vortex phase plate (VPP)
[5-6]. However, the VPP is typically designed for a specific
frequency, and it inherently constrains the frequency versa-
tility of THz vortex sources.

In this presentation, we propose a novel THz vortex
source based on a difference frequency generator (DFG)
formed of a 4’-dimethylamino- N-methyl- 4-stilbazolium
tosylate (DAST) crystal. This system exhibited an ex-
tremely wide tunability in a frequency range of 2-6 THz.

2. Experiments and results

The experimental setup of the system is shown in Fig. 1.

The output from PPSLT-OPA1 was converted into an opti-
cal vortex (£ = 1) by using a VPP (Fig. 1(b)), and its wave-
length, A, was then fixed to be 1.56 pm. The
PPSLT-OPA2 output with a Gaussian spatial form (Fig.

1(c)) was tuned within a wavelength range of 1.50-1.64 um.

Subsequently, the OPA1 and OPA2 outputs were then de-
livered to a DAST crystal, thereby generating a THz vortex
output as a different frequency output.

The 4 THz output exhibited a vortex mode with a topo-
logical charge of £ =+ 1 (Fig. 2 (a-b)), as evidenced by an
annular spatial form and a twin-lobed far-field rising to the
right and left by an inclined focusing method (Fig. 2
(a’-b”)). Also, it is noteworthy that the undesired high-
er-order radial modes were suppressed owing to
soft-aperture effects in the DFG. The THz vortex output
with a topological charge of £ =+ 1 was continuously tuned
within a frequency range of 2-6 THz.

3. Conclusions

We have demonstrated a widely tunable THz vortex
source formed of a picosecond DAST difference frequency
generator. The THz vortex outputs with a topological
charge of {1, = + 1 are obtained at a frequency range of
from 2 to 6 THz. Such THz vortex source will provide new

advanced technologies, such as the 2-dimesional identifica-
tion of structures (crystalline, polymorphism, chirality etc.)
of crystals with a high spatial resolution beyond the diffrac-
tion limit.
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Fig.1 Experimental setup of a tunable THz vortex generator based on a
1.5 pm vortex pumped DAST-DFG

Fig. 2. (a),(b) Spatial profiles of the THz vortex output.
(a’),(b”) Astigmatically focused THz vortex outputs.
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