Chemical Vapor Deposition of 2D Transition Metal Dichalcogenides – Just Add Salts National Institute for Materials Science, °Shisheng Li E-mail: li.shisheng@nims.go.jp

Chemical vapor deposition (CVD) of 2D transition-metal dichalcogenides (TMDCs) usually involves the conversion of vapor precursors into solid products via a vapor-solid-solid (VSS) mode (WO₃ + S/Se + H₂ \rightarrow WS₂/WSe₂). It always requires an extremely high temperature and low pressure to sublimate the transition metal oxides.

In 2015, we published a pioneering work on halide-assisted atmospheric-pressure CVD of WSe₂ and WS₂ monolayers at lower temperature due to the formation of volatile tungsten oxychlorides (WO₃ + NaCl \rightarrow WO_xCl_y, WO_xCl_y + S/Se + H₂ \rightarrow WS₂/WSe₂).^[1,2] This method has been widely used for growing ~ 50 types of 2D TMDCs in the last four years.^[3]

In 2018, we revealed the important vapor-liquid-solid (VLS) growth of TMDCs which is triggered by the alkali cations in salt-assisted CVD (MoO₃ + NaCl \rightarrow Na₂Mo_xO_y, Na₂Mo_xO_y + S \rightarrow MoS₂). The in-situ generated non-volatile Na-Mo-O droplets mediate the growth of 1D MoS₂ nanoribbons on NaCl crystal and 2D MoS₂ film.^[4]

The VLS growth involves non-volatile molten precursors (e.g., Na₂MoO₄, Na₂WO₄) shows great advantages in wafer-scale growth of 2D TMDC film and patterned (site-controlled) growth of 2D TMDC monolayers.^[5] We clarified that the VLS growth thus pave the new way for the high-efficient, scalable synthesis of two-dimensional TMDC monolayers. It opens a new research direction for the 2D community.

References

- [1] S. Li, et al, Appl. Mater. Today 1 (2015), 60-66
- [2] D. Bradley, Mater. Today 18 (2015), 533
- [3] J. Zhou, et al, Nature 556 (2018), 355-359
- [4] S. Li, et al, Nat. Mater. 17 (2018), 535-542
- [5] S. Li, et al, submitted