酸素欠損 WO_x(2.83 < x < 3) エピタキシャル薄膜の電子・熱輸送特性 Electron and heat transports of oxygen deficient WO_x (2.83 < x < 3) epitaxial films 北大情報¹,北大電子²,東大エ³ ⁰キムゴウン¹, ジョヘジュン^{1,2},馮斌³,幾原雄一³,太田裕道^{1,2} IST¹-, RIES²-Hokkaido U., U. Tokyo, ^oG. Kim¹, H.J. Cho^{1,2}, B. Feng³, Y. Ikuhara³, H. Ohta^{1,2}

E-mail: woom93@gmail.com

Tungsten oxide (WO_x) has been studied as an active layer of electrochromic devices such as anti-glare mirror and smart window because its color can be controlled electrochemically at room temperature. Although various crystal structures are known in oxygen deficient WO_x, called Magnéli phase such as WO_{2.9}, WO_{2.82} and WO_{2.72}, the electron and heat transports are not clearly understood yet because of the lack of the study on the epitaxial WO_x . Here we report electron and heat transports of oxygen deficient WO_x (2.83 < x < 3) epitaxial films at room temperature. We fabricated WO_x films on (001) LaAlO₃ substrate with various x ranging from 2.835 to 2.977 by the pulsed laser deposition technique under controlled oxygen atmosphere. Figures (a) electrical (c) summarize the conductivity, thermopower, and thermal conductivity of the resultant WO_x epitaxial films. Those of amorphous WO_x films are also plotted for comparison.^[1] Both electrical conductivity and thermal conductivity of the epitaxial films dramatically increases when x decreases from 2.98 to 2.95 whereas the absolute value of thermopower decreases from 550 to 30 μ V K⁻¹, indicating drastic increase of the carrier concentration. However, these properties do not change a lot when x < 2.95, probably due to that structural phase transition occurs around $x \sim 2.95$. We believe these systematic electron and heat transport data of oxygen deficient WO_x epitaxial films would be useful to develop WO_x-based devices.

 G. Kim et al., J. Phys. Chem. C, DOI: https://doi.org/10.1021/acs.jpcc.9b02448 (2019).

FIG. | Electron and heat transport properties of the WO_x films at room temperature. (a) Electrical conductivity, (b) thermopower, and (c) thermal conductivity.