定量位相画像の空間自己相関長を用いた乳がん組織診断: 空間自己相関長の抽出条件が識別精度に及ぼす影響の調査

Breast tissue diagnosis using local correlation length of quantitative phase images:

dependence of calculation conditions on separation accuracy

九工大情報工 〇(11)座小田 聖, 國居 弘樹, 高林 正典

Kyushu Inst. of Tech., °(M1)Satoru Zakoda, Hiroki Kunisue and Masanori Takabayashi

E-mail: takabayashi@ces.kyutech.ac.jp

1. はじめに

定量位相イメージング(QPI)は細胞や組織 などの位相物体の厚さや屈折率の分布を染色 なしに取得できるばかりか,ナノスケールの構 造変化情報にアクセスすることができるため, 病理診断への応用が期待されている.ナノスケ ール構造変化マーカーの一つとして Local Correlation Length (LCL)が提案されている[1]. LCL は定量位相画像における局所領域の空間 自己相関長である.本研究では,局所領域サイ ズなどの LCL の抽出条件が,乳がん組織診断 をはじめとする病理診断の正確性に与える影 響を調査する.

2. SLIM

本研究で使用する QPI 手法である Spatial Light Interference Microscopy(SLIM)の光学系を 図1に示す[2]. 試料を通過した後の光のうち, 非散乱光成分にのみ位相遅れを与え, CCD で 得られた 4 種類の光強度分布から定量位相画 像を取得する.

Fig. 1. Optical system of SLIM

3. LCL と乳がん組織診断への適用

LCL を用いて, 乳がんの組織診断を試みる. LCL の計算方法は文献[1]に詳細に記されている.本研究では, 良性組織を B, 悪性組織のグレード 1, 2, 3 をそれぞれ M1, M2, M3 と表記し, B, M1, M2, M3 間の識別を目指す.それぞれのサンプル数は, 20, 16, 16, 14 であった. LCL マップの算出時に用いる局所領域サ イズは 40×40 か 80×80 pixel とし,また,LCL マップから抽出するマーカー値は,LCL の標 準偏差または標準偏差/平均のいずれかとする.

図2にLCLマップから抽出した組織内LCL 標準偏差,標準偏差/平均に基づくそれぞれの 識別結果を示す.評価指標は,Wilcoxon ranksum test の p 値とする.LCLマップ内の標準偏差/ 平均を用いたとき,高い正確性で2 グレード以 上異なる組織の識別を行えることが分かった.

Fig. 2. Inter-grades separation accuracy with several calculation conditions of LCL

4. おわりに

本研究では,LCL を用いたがん診断におけ る局所領域サイズの影響について調査した.そ の結果,LCL を用いたがん診断では2つ以上 離れたグレード間識別が可能であることが分 かった.また,少なくとも本研究で用いた2種 類の局所領域間では,サイズによる識別精度に 大きな差異は見られなかった.隣接グレード間 の識別を行うためには他のマーカーと組み合 わせるなどが有効であると考える.

本研究を遂行するにあたり,定量位相画像の 提供や助言をくださった,米・イリノイ大学の G. Popescu 教授, A. Balla 教授, H. Majeed 博士 に深謝する.また,本研究の一部は科研費 (18K14150)の助成を受けて行われた.

参考文献

- M. Takabayashi, *et al.*, J. Biomed. Opt. 24, 016502 (2019).
- [2] Z. Wang, et al., Opt. Express, 19, 1016 (2011).