Spin-dynamics of a chiral antiferromagnet Mn₃Sn 東大物性研¹, 阪大 CSRN², CREST³, 東北大 AIMR⁴, 東北大 CSRN⁵, 東大物工⁶, 理研 CEMS⁷, 東北大 CSIS⁸, 東大理物⁹ 〇三輪真嗣 ^{1,2,3}, 飯浜賢志 ^{4,5}, 野本拓也 ^{3,6}, 冨田崇弘 ^{1,3}, 肥後友也 ^{1,3}, Ikhlas Muhammad¹, 大谷義近 1,3,7, 水上成美 4,5,8, 有田亮太郎 3,6,7, 中辻知 1,3,9 ISSP, UTokyo¹, CSRN-Osaka², CREST³, AIMR Tohoku Univ.⁴, CSRN-Tohoku⁵, Dep. Appl. Phys. UTokyo⁶, RIKEN⁷, CSIS Tohoku Univ.⁸, Dep. Phys. UTokyo⁹ °S. Miwa^{1,2,3}, S. Iihama^{4,5}, T. Nomoto^{3,6}, T. Tomita^{1,3}, T. Higo^{1,3}, M. Ikhlas¹, Y. Otani^{1,3,7}, S. Mizukami^{4,5,8}, R. Arita^{3,6,7} & S. Nakatsuji^{1,3,9} E-mail: miwa@issp.u-tokyo.ac.jp Understanding of spin dynamics forms the basis of spintronic application. Recently, the metallic antiferromagnets Mn_3X have attracted significant attention for its strong response (e.g. anomalous Hall effect [1]) comparable to ferromagnets owing to the hidden ferroic order, which configures large Berry curvature originated from Weyl points in a momentum space. Such ferroic order can be characterized by cluster magnetic octupoles based on neighboring magnetic moments [2] (Fig. 1a), and thus it is highly important to clarify the dynamics of cluster octupole for designing spintronics devices. In this study, we have revealed the dynamics of a chiral antiferromagnet Mn_3Sn utilizing magneto-optical Kerr effect. A single-crystal $D0_{19}$ -Mn₃Sn in a bulk form has been employed for this study. Figure 1b shows static MOKE results. For polar MOKE (B // (2-1-10)), a large Kerr rotation angle with clear hysteresis was observed. While clear hysteresis curve was also confirmed in longitudinal MOKE in [01-10], a significant signal was not confirmed in [0001]. These are the typical characteristics of Mn₃Sn [3]. Results of time-resolved MOKE will be discussed in the presentation [4]. A part of this work was supported by JSPS-KAKENHI (Nos. 18H03880) and JST-CREST (JPMJCR18T3). - [1] S. Nakatsuji et al., Nature **527**, 212 (2015). [2] M.-T. Suzuki et al., Phys. Rev. B **95**, 094406 (2017). - [3] T. Higo et al., Nat. Photon. 12, 73 (2018). [4] S. Miwa et al., submitted. Fig. 1 a, Spin and crystal structures of D0₁₉-Mn₃Sn. b, Results of static MOKE.