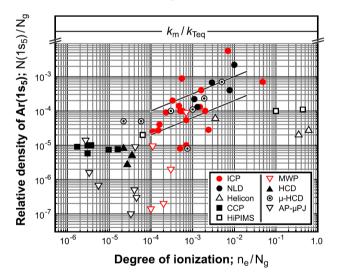
低温 Ar プラズマにおける電子と準安定励起原子 Ar (1s5)の数密度相関

Density-Correlation between Metastables and Electrons

in Low-temperature Plasmas in Ar

慶應大理工


Keio Univ., Toshiaki Makabe

makabe@keio.jp

There exist large number of experimental and theoretical studies of neutral metastables in Ar to explore and clarify the macroscopic and the microscopic characteristics of low-temperature plasma sources for over three decades. The accumulated set of data comprised of the number density N^* and temperature T_g of the metastable as well as the electron density n_e over a wide range of external parameters enable the analysis of the inner plasma parameter in the form of the relative densities, N^*/N_g and n_e/N_g normalized by the feed gas density N_g , based on a simple rate equation. That is,

$$rac{n_e}{N_g} = -rac{k_{mp}}{k_{Teq}}rac{N^*}{N_g} - rac{k_{mp}}{k_{Teq}} igg(rac{k_m}{k_{Teq}} + rac{I_d}{k_{mp}}igg) igg(1 + rac{k_m}{k_{Teq}}rac{1}{igg(rac{N^*}{N_g} - rac{k_m}{k_{Teq}}igg)}igg)$$

A reasonable cross-correlation in the above equation, is found between N^*/N_g and n_e/N_g during a steady-

state under condition without three-body collision and diffusion, i.e., $I_d = 0$ in Ar (see above fig. [1]). A strong positive correlation between N^*/N_g and n_e/N_g demonstrates that the metastable density N^* can be an indirect indicator of the plasma density n_e in a low-temperature plasma. It will be noted, in addition, that the high-sensitivity of electrons to the surrounding local field makes it difficult to observe the local density and its distribution in a low-temperature plasma even though there exist several traditional methods to measure n_e . The details of the present result are published as the review article [1].

[1] T. Makabe; J. Phys. D 52 (2019) 213002, and 52 (2019) 259601.