Composition dependence of spin-orbit torque in Pt$_{1-x}$Mn$_x$/CoFeB heterostructures

1Lab. for Nanoelectronics and Spintronics, RIEC, Tohoku Univ., 2CSIS (Core Research Cluster), Tohoku Univ., 3CSR, Tohoku Univ., 4CIES, Tohoku Univ., 5WPI-AIMR, Tohoku Univ.

$^\circ$(M1) K.V. De Zoysa1, R. Itoh1, (D) Y. Takeuchi1, S. DuttaGupta1,3, S. Fukami1,5 and H. Ohno1,5

E-mail : v-zoysa@riec.tohoku.ac.jp

Spin-orbit torque (SOT) in antiferromagnet (AFM)/ ferromagnet (FM) heterostructures is prospective for digital and analogue spintronic devices [1-4]. The crucial requirements of co-existing large effective spin-Hall angle [5] and significant exchange-bias field [1] in a single material are satisfied in Mn-Y ($Y = 4d$ or $5d$ transition metal) metallic AFMs, making them promising candidate for AFM-based spintronic devices. Previous experimental results on polycrystalline Mn-Y/FM structures suggested the primary role of spin-orbit coupling of the d-transition element in determination of strength of SOTs [6], while subsequent results indicated an important role played by staggered magnetization of Mn [7]. Thus, systematic studies of SOTs in metallic Mn-Y/FM structures with the variation of composition are of necessity for better comprehension of SOT generation mechanism. Here, we quantify SOTs in AFM/FM PtMn/CoFeB heterostructures as a function of PtMn composition to obtain insights into the origin of SOT generation in AFM/FM structures.

We utilize Si/SiO$_2$ sub./Ta(3)/Ru(1.5)/Pt$_{1-x}$Mn$_x$(10)/(Co$_{25}$Fe$_{75}$)B$_{25}$(1.8)/MgO(1.5)/Ru(1) (in nm) structure, with various Mn-composition (x at.%) We use extended harmonic Hall measurement technique for quantification of SOTs [8]. Slonczewski-like (H_{SL}) and field-like (H_{FL}) components of SOT effective fields are determined from fitting analysis of external magnetic field H dependence of 1st and 2nd harmonic signals. Figure 1 shows the obtained H_{SL} and H_{FL} as a function of x. The results show a non-monotonic variation for H_{SL} and H_{FL} with x. We will discuss possible scenarios accounting for the observed composition dependence of SOT. The present results show the possibility for tuning SOTs in Mn-based AFMs for next generation AFM/FM structures.

A portion of this work is supported by JSPS Kakenhi 18KK0143 and 19H00858, JSPS Core-to-Core Projects & RIEC Cooperative Research Projects. K.V.D.Z. acknowledges WISE program for AIE for financial support.

Figure 1: Slonczewski-like (H_{SL}) and field-like (H_{FL}) SOTs as a function of Mn composition x for Mn$_x$Pt$_{1-x}$/CoFeB structures.