GaN 横型 MISFET におけるチャネル移動度に対する界面準位密度の影響 2

Effect of interface state density on channel mobility in GaN lateral MISFET 2.

名大院工¹,名大未来材料・システム研究所²,物質・材料研究機構³ 名大赤崎記念研究センター⁴,名大 VBL⁵,産総研 GaN-OIL⁶ ^O安藤 悠人^{1,6},中村 徹²,出来 真斗²,田岡 紀之¹,田中 敦之^{2,3},渡邊 浩崇² 久志本 真希¹,新田 州吾²,本田 善央²,山田 永⁶,清水 三聡^{2,6},天野 浩^{2,3,4,5} Dept. of Electronics., Nagoya Univ.¹, IMaSS, Nagoya Univ.², NIMS³, ARC, Nagoya Univ.⁴, VBL, Nagoya Univ.⁵, AIST GaN-OIL⁶ ^OY. Ando^{1,6}, T. Nakamura², M. Deki², N. Taoka¹, A. Tanaka^{2,3}, H. Watanabe² M. Kushimoto¹, S. Nitta², Y. Honda², H. Yamada⁶, M. Shimizu^{2,6}, and H. Amano^{2,3,4,5}

E-mail: <u>yuuto_a@nuee.nagoya-u.ac.jp</u>

窒化ガリウム(GaN)パワーMISFET において,導通損失を物性限界に近づけるためゲート絶 縁膜/GaN 界面におけるチャネル移動度の向上が必須である. Si MOSFET でのキャリアの散 乱要因は,チャネルに対して垂直の実効電界強度 *E*eff あるいは表面電子濃度 *N*s に依って異な ることが知られている^[1]. 以前我々は Al₂O₃/GaN 蓄積モード横型 MISFET において,低電界 領域でのチャネル移動度がゲート電極形成後アニール(Post Metallization Annealing: PMA^[2])に よって向上することを報告した^[3].本研究では Al₂O₃/GaN MIS 界面における界面準位密度 *D*_{it} および低電界移動度に対するゲートメタル堆積手法の影響について報告する.

Al₂O₃/n-GaN MIS キャパシタおよび蓄積モード横型 MISFET を作製した. MISFET 作製プロ セスは次の通りである. c 面低抵抗 GaN 基板上に MOVPE 法により膜厚 5µm の意図的なドー ピングをしない UID-GaN を成長した. Si をイオン注入した後 1200℃, 30 秒間のアニールを行 い, ソース・ドレイン領域を形成した. ゲート絶縁膜として TMA・H₂O を原料とした熱 ALD 法により Al₂O₃を 50nm 堆積した. ソース・ドレイン電極として電子線蒸着により Ti/Al/Ti/Au

を堆積し、アニールを施した.最後にゲート・パッド 電極として電子線および抵抗加熱蒸着によりNi/Auを 堆積した.また n-GaN(Si:4×10¹⁶ cm⁻³)上に同様の絶縁 膜・ゲートメタルを用い MIS キャパシタを作製した. 以下では電子線、抵抗加熱蒸着によりゲートを形成し た素子をそれぞれ EB, RH とする.

Fig.1 に Ni/Al₂O₃/n-GaN MIS キャパシタにおける D_{it} 分布を示す. Terman 法およびコンダクタンス法により 見積もられた D_{it} はともに EB よりも RH において低 いことがわかる.またフラットバンド電圧 V_{FB} は EB, RH でそれぞれ-1.66, +0.64 V と 2 V 程度の差があ り, RH が理想 V_{FB} (+1.0 V 程度)に近いことを確認し た.これらより RH は EB と比較して D_{it} および正の実 効固定電荷 Q_{F} の密度が低いことがわかった.

MISFET の伝達特性よりサブスレッショルドスウィ ングは EB, RH でそれぞれ 162, 116 mV/decade であ り, V_{TH} は-2.02, -0.48 V であった. MIS キャパシタ と同様に D_{it} および Q_F は RH で低密度であると考えら れる. Fig.2 に実効チャネル移動度 μ_{eff} の N_s 依存性を 示す.ここで N_S はゲート-チャネル間容量-電圧特性か ら求めた.低 N_S 領域(<10¹² cm⁻²)における μ_{eff} は RH が 高く, Coulomb 散乱の影響が小さいと考えられる.

Fig.1 D_{it} distributions of Ni/Al₂O₃/n-GaN MIS capacitors estimated by Terman and the conductance methods.

Fig.2 Effective channel mobilities of MISFETs as a function of the surface electron density.

以上のことからゲートメタル堆積手法によって Al₂O₃/GaN MIS 構造における界面準位および 実効固定電荷密度が異なり, MISFET の移動度に影響を及ぼすことが示唆された.

[【]謝辞】本研究は文部科学省「省エネルギー社会の実現に資する次世代半導体研究開発」の委託を受け行われた.^[1] Takagi *et al.*, IEEE Trans. Electron Devices, **41**, 2357 (1994).

^[2] 安藤他, 応用物理学会第 66 回春季学術講演会, 9p-M121-9 (2019).

^[3] Hashizume et al., Appl. Phys. Exp., 11, 124102 (2018).