Al₂O₃/AlGaN/GaN MIS 構造の電気的特性における ALD 原料の影響

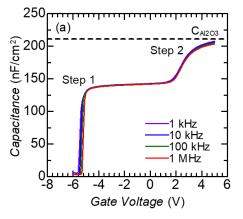
Influence of ALD Precursor on Electrical Properties of Al₂O₃/AlGaN/GaN MIS Structure

奈良先端大¹,三菱電機(株)²,[○]東 雅人¹,上沼 睦典¹,吉嗣 晃治², 柳生 栄治²,石河 泰明¹,浦岡 行治¹

NAIST¹, Mitsubishi Electric Corp.², [°]Masato Higashi¹, Mutsunori Uenuma¹, Koji Yoshitsugu², Eiji Yagyu², Yasuaki Ishikawa¹, Yukiharu Uraoka¹

E-mail: higashi.masato.hg0@ms.naist.jp

[背景]


GaN 系半導体デバイスのゲート絶縁膜として、 Al_2O_3 、 SiO_2 等が利用されている。 Al_2O_3 は一般的に、TMA (trimethyl aluminum, C_3H_9Al) を Al 原料とした原子層堆積法(ALD) により成膜されている。しかし、成膜過程で生じる酸素欠損や TMA 由来の炭素不純物の残留により、膜中や界面での電荷トラップが起こり、閾値電圧シフトの原因となる。これまでに我々のグループでは、TMA と比較して原料ガス中の炭素量が少ない DMAH (dimethyl aluminum hydride, C_2H_7Al) を Al 原料に用いて Al_2O_3 / GaN 構造の評価を行った。その結果、 Al_2O_3 中の炭素不純物密度が低減され、界面準位密度が改善された[1]。そこで本研究では、 Al_2O_3 /AlGaN/ GaN MIS 構造の絶縁膜に DMAH, および TMA を利用した場合の電気的特性の比較を目的とする。

[実験方法]

AlGaN/GaN/SiC 基板上に、ALD の原料ガスとして DMAH および TMA、酸化剤として O_3 を用い Al_2O_3 (30 nm)を 300 °Cで堆積し、電極を形成後、 N_2 (300 °C、3 min)雰囲気で PMA 処理を行った.作製した Al_2O_3 /AlGaN/GaN MIS ダイオードに対し、容量電圧(C-V)特性評価を行った.

[電気特性評価の結果および考察]

C-V 特性を Fig.1 に示す。 $Al_2O_3/AlGaN$ 容量の周波数分散を測定した結果,TMA で Al_2O_3 を堆積した場合と比較して DMAH では $+2 \sim +5$ V 付近での周波数分散が小さいことがわかった。また,TMA では Step 2 の C-V カーブの立ち上がりが緩やかになることからも,DMAH の場合は界面準位密度が低減されていることが示唆される[2]。以上のことから, $Al_2O_3/AlGaN/GaN$ MIS 構造において,DMAH による Al_2O_3 中の炭素不純物密度の低減は,電荷トラップの少ない良好な $Al_2O_3/AlGaN$ 界面を形成していると考えられる。また,DMAH は TMA と比較して, $Al_2O_3/AlGaN/GaN$ MIS 構造において,界面特性の改善が可能であることを明らかにした。

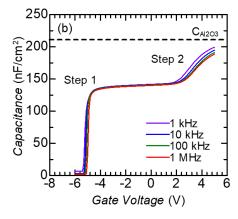


Fig. 1. *C-V* characteristics of the Al₂O₃/AlGaN/GaN MIS diode with (a) ALD-DMAH and (b) ALD-TMA 参考文献

- [1] M. Uenuma, K. Takahashi, S. Sonehara, Y. Tominaga, Y. Fujimoto, Y. Ishikawa, and Y. Uraoka, AIP Advances 8, 105103 (2018)
- [2] Y. Hori, Z. Yatabe, and T. Hashizume, J. Appl. Phys. **114**, 244503 (2013)