高温熱処理 p-GaN 上に作製した SiO₂/p-GaN MOS の CV, DLTS 測定 CV, DLTS of SiO₂/p-GaN MOS fabricated on high-temperature annealed p-GaN 愛知工大¹、トヨタ自動車²

[°]吉田光¹、竹内和歌奈¹、徳田豊¹、大川峰司²、富田英幹²

Aichi Inst. of Technol.¹, Toyota Motor Corporation² [°]H. Yoshida¹, W. Takeuchi¹, Y. Tokuda¹, T. Okawa², H. Tomita² E-mail: v19721vv@aitech.ac.jp

【はじめに】

GaN を用いた MOSFET は低損失、高出力動作が可能であり、Si に代わる次世代パワーデ バイスとして注目されている。高性能の GaN 系 MOS パワーデバイス開発には、しきい値電 圧の良好な制御と低い界面準位密度が重要である。今回、高温熱処理 p-GaN 上に作製した SiO₂/p-GaN MOS について CV 及び DLTS 測定を行い、高温熱処理の影響について検討を行 った。

【実験方法】

用いた試料は n⁺-GaN 基板上に n⁺バッファ層を介して、MOVPE 法によって n⁻層 ([Si]=1×10¹⁶ cm⁻³)、p⁻層 ([Mg]=1×10¹⁸ cm⁻³)、p⁺層 ([Mg]=8×10¹⁹ cm⁻³)を成長させたものである。活性化熱 処理は、Ar 雰囲気中で熱処理時間 5 分、熱処理温度 1142 ℃ の条件で行った。その後、ゲー ト絶縁膜として SiO₂を成膜した。電極は Ni/Au を用いて作製した。この試料に対して CV 測 定、測定温度 225 K から 400 K での温度掃引容量 DLTS 測定を行った。

【実験結果】

図1に測定周波数1 kHz、測定温度300 K でのCV 測定結果を示す。蓄積状態と空乏状態が明瞭に観測 された。図2 に CV 測定から得られた深さ方向に対 するイオン化アクセプタ濃度分布を示す。深さ方向 に対するイオン化アクセプタ濃度分布がフラットな 領域では、イオン化アクセプタ濃度は6.5×10¹⁶ cm⁻³ と求まり、p⁺層においてイオン化アクセプタ濃度の 低下が見られた。図3 に時定数191 ms の DLTS 信号 を示す。黒色のプロットは界面準位とバルクトラッ プを含む測定条件での DLTS 信号であり、350 K 付近 にブロードなピークが観測された。赤色のプロット

Fig.1, CV characteristics for p-GaN MOS.

はバルクトラップのみを測定した DLTS 信号であり、界面準位とバルクトラップを含む信号 に比べて、355 K にシャープなピークが観測された。

【まとめ】

1142 ℃の高温熱処理により、アクセプタ濃度の低下を観測した。DLTS 測定で 350 K 付近 に信号を観測したが、今後界面とバルクトラップの分離を検討する予定である。

Fig.2, Depth profile of ionized acceptor concentration.

Fig.3, DLTS spectra for p-GaN MOS.