SiO₂/Al₂O₃ 絶縁膜を有する 3C-SiC n-MOS キャパシタの 固定電荷と界面ダイポール解析

Charge analysis of SiO₂/Al₂O₃ gate dielectric on (111) oriented 3C-SiC

九大総理エ¹, 九大 GIC², エア・ウォーター³

⁰岡 龍誠¹, 山本 圭介¹, 王 冬¹, 中島 寛², 菱木 繁臣³, 川村 啓介^{2,3}

IGSES Kyushu Univ.¹, GIC Kyushu Univ.², Air water³

°R. Oka¹, K. Yamamoto¹, D. Wang¹, H. Nakashima², S. Hishiki³, K. Kawamura^{2,3}

1. はじめに 我々はSiO₂/Al₂O₃の積層構造を有する(111) 3C-SiC n-MOS キャパシタが良好な *C-V*特性・界面準位を有することを示した[1,2]。この MOS キャパシタのフラットバンド電圧($V_{\rm fb}$)はややマイナス寄りであったが[1,2]、MOSFET を適切な電圧で ON/OFF させるためには、 $V_{\rm fb}$ とも関連するしきい値電圧($V_{\rm T}$)の制御が重要である。積層構造のゲート絶縁膜に関しては、各絶縁膜に含まれる固定電荷($Q_{\rm fix}$)と、絶縁膜同士の界面に生じる界面ダイポール($\delta_{\rm dipole}$)が $V_{\rm fb}$ を左右する。本研究では $V_{\rm fb}$, $V_{\rm T}$ 制御を見据えて、SiO₂/Al₂O₃/3C-SiC ゲートスタック中に含まれる $Q_{\rm fix}$ と $\delta_{\rm dipole}$ を調査した。

2. 実験 積層構造のゲート絶縁膜を有する MOS キャパ シタの V_{fb} は Fig. 1 中の式(1)で表される。種々の EOT₁ および EOT₂を有する MOS キャパシタを作製して、描 いた V_{fb} -EOT₁ および V_{fb} -EOT₂ プロットから Q_{fix1} , Q_{fix2} , δ_{dipole} を算出した。試料は n-Si(111)上に 3C-SiC(111)(N_{D} ~10¹⁶ cm⁻³)をエピタキシャル成長した基 板を化学洗浄後、300°C で ALD-Al₂O₃を、次いで SiO₂ を施したのち、ゲート電極およびバックコンタクトとし て Al を真空蒸着・パターニングして作製した[1,2]。

Fig. 1 Sample cross-section and $V_{\rm FB}$ equation.

3. 結果・考察 Figure 2(a), 2(b)に SiO₂ 膜厚(EOT₁)を固定(5.2 nm)し、Al₂O₃ 膜厚を変化させた際の 3C-SiC MOS キャパシタの C-V 特性および $V_{\rm fb}$ -EOT₂ プロット示す。 $V_{\rm fb}$ -EOT₂ の傾きから、Al₂O₃ には-2.77×10¹¹cm⁻²の固定電荷が含まれることが分かった。同様に、Fig. 2(c), 2(d)に示した Al₂O₃ 膜厚(EOT₂)を固定(3.0 nm)した際の結果から、SiO₂には-5.96×10¹¹ cm⁻²の固定電荷が含まれており、 これらの結果および Al・SiC の仕事関数(それぞれ 4.08, 4.21 eV)を用いて算出された $\delta_{\rm dipole}$ は、-0.99 eV であった。全体の結果を Fig. 3 に模式的に示す。この $\delta_{\rm dipole}$ の値は MOS の界面ダイポールとし ては比較的強い値であり、本ゲートスタックをデバイスに応用する際、この点を十分に考慮した 材料・プロセスを設計する必要がある。

参考文献 [1] 山本他, 2019 年秋応用物理学会講演予稿集. [2] K. Yamamoto et al., SSDM2018, p. 871.

Fig. 2 (a) C-V characteristics and (b) V_{fb} -EOT₂ plot for various Al₂O₃ thickness, and (c) C-V characteristics and (d) V_{fb} -EOT₁ plot for various SiO₂ thickness.