電子エネルギー損失分光法による非発光性 Bloch モード分析

Characterization of Nonradiative Bloch Modes by Electron Energy-Loss Spectroscopy

九大総理工¹, 京大化研²

°(M2)吉本大地¹,(M1)木村勇一郎¹, 斉藤光¹, 波多聰¹, 藤吉好史², 倉田博基²

Kyushu Univ.¹, Kyoto Univ.²

^oDaichi Yoshimoto¹, Yuichiro Kimura¹, Hikaru Saito¹, Satoshi Hata¹,

Yoshifumi Fujiyoshi², Hiroki Kurata²

E-mail: yoshimoto.daichi.321@s.kyushu-u.ac.jp

走査型透過電子顕微鏡(STEM)による顕微分光は物質や物質表面の誘電応答を局所的に分析す る強力な手段であり、近年はナノ構造のプラズモンモードの分析にも応用されている。周期凹凸 構造を持つ金属表面(プラズモニック結晶(PIC))では表面プラズモンポラリトン(SPP)のバンド構造 が形成される。三角格子 PIC (Figure 1(a))の Γ 点におけるバンドギャップはこれまでに STEM-カソ ードルミネセンス法(CL)によって調べられ、表面構造依存性が明らかにされてきた^[1]。しかし、 第1バンドギャップが開く M 点、K 点では SPP は非発光性であるため、STEM-CL による局所モ ード分析が困難である。この第1バンドギャップはどの波数の SPP も伝播することができない完 全バンドギャップになることが知られており^[2]、PIC線欠陥導波路^[3]に利用できるなど応用上重要 である。また2種類の直径の円柱または円筒穴配列で構成される結晶ではK点およびK'点にChern 数の異なるバンド端モードが形成され、フォトニック結晶においては位相反転境界におけるトポ ロジカルエッジモードの形成が実証されている^[4]。このように第一バンドギャップ周辺の非発光 モードのエンジニアリングがますます重要になってきているが、局所状態分析には発光を必要と しない電子エネルギー損失分光(EELS)が有効であると期待される。そこで本研究では三角格子PIC のプラズモンモードの STEM-EELS 分析を試みた。その結果、バンド端 Bloch モードが低エネル ギー側では格子点、高エネルギー側では格子点間に表面電荷の分布極大を有する SPP 定在波とな ることが実験的に確認された(Figure 1(b))。この結果は電磁場シミュレーションとも一致し、EELS スペクトルには確かにプラズモニックバンドの状態密度の情報が反映されることが示された^[5]。 同様の STEM-EELS 分析をハニカム格子 PlC (Figure 1(c))にも適用したところ、三角格子 PlC とは エネルギー高低関係が反転したバンド端モードが観測された(Figure 1(d))。

Figure 1.

(a,c) Schematic drawing of (a) the triangular PIC and
(c) the honeycomb PIC.
The triangular lattice is shown by red lines and points.
(b,d) EELS spectrum images averaged from 0.82 to 1.02 eV and 1.17 to 1.37 eV of (b) the Triangular PIC with the 700 nm periodicity and the 230 nm disk diameter and
(d) the honeycomb PIC with the 700 nm periodicity and the 230 nm disk diameter.

[1] H. Saito and N. Yamamoto, Opt. Express. 23, 2524 (2015). [2] S. C. Kitson et al., Phys. Rev. Lett. 77, 2670 (1996). [3] H. Saito et al., ACS Photon. 4, 1361 (2017). [4] X. T. He et al., Nat. Commun. 10, 872 (2019). [5] D. Yoshimoto et al., ACS Photon. 5, 4476 (2018).
この研究は「文部科学省委託事業ナノテクノロジープラットフォーム」(東京工業大学)、「風戸研究奨励会」の支援の下、行われた。