Morphological changes of Cu surfaces by comparison of Ar⁺ and Xe⁺ ion irradiation induced by photoemission-assisted plasma

 $^{\circ}$ (D)Saijian Ajia 1 , $\,$ (M2)Nobuhisa Kamata 1 , Shuichi Ogawa 1 , Yuji Takakuwa 1

IMRAM. Tohoku Univ.¹

E-mail: saijian@mail.tagen.tohoku.ac.jp

A photoemission-assisted plasma (PAP) ion source with Xe excimer lamp $(hv = 7.2 \text{ eV})^1$ has been developed to flatten Cu surfaces below 1 nm for achieving surface activated bonding at RT without pressurization. For this sake, ion beams with ion energy $E_{\text{ion}} < 50 \text{ eV}$ are demanded to avoid sputtering-induced roughening. In this study, the momentum transfer effect of ion irradiation on flattening of Cu surface has been clarified by comparison of Ar⁺ and Xe⁺ ion irradiation.²

Ar⁺ and Xe⁺ ion was generated by PAP under

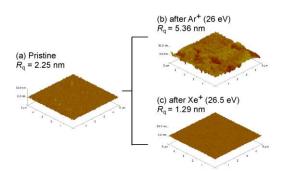


Fig. 1 AFM images of Cu surface (a) as pristine (b) after Ar⁺ ion ($E_{ion} = 26 \text{ eV}$), and (c) Xe⁺ ion ($E_{ion} = 26.5 \text{ eV}$) irradiation, respectively. The scan size of AFM is 5×5 µm².

pressure of 180 and 100 Pa at bias voltage of 400 V, respectively. Consequently, the E_{ion} was estimated based on the charge transfer collisional ion sheath model, which was 26 and 26.5 eV for Ar⁺ and Xe⁺ ion. Pristine Cu surface with surface root mean roughness (R_q) = 2.25 nm (Fig. 1(a)) were irradiated by Ar⁺ and Xe⁺ ion, respectively. As shown in Fig. 1(b) that pristine Cu surface was roughened due to the crater formation after Ar⁺ ion irradiation at ion fluence (F_{ion}) about 3.12×10^{18} ions/cm². On the other hand, by Xe⁺ ion irradiation at same F_{ion} , the R_q of Cu surface decreased from 2.25 to 1.29 nm.

This is realized by the difference of the ratio between sputtering yield and adatom yield. Comparison with Ar⁺ ion irradiation, more movable adatoms induced by momentum transferred from Xe⁺ ion irradiation. It contributed to enhancement of surface migration leading to a surface flattening. Adatom induced surface migration is so-called ion beam induced collision motivated diffusion.³ It is considered that the higher ion mass, the higher collision motivated diffusion in the range of $E_{ion} < 50 \text{ eV.}^2$ Lateral diffusion of surface atoms induced by momentum transfer effect has been considered as a main mechanism for surface flattening. Furthermore, for the large area surface flattening, 3-inch sized Cu substrate surface was also irradiated by Xe⁺ ion, showing an initial surface $R_q = 4.32$ reduced to 1.78 nm. In accordance with rms roughness, the results of height distribution and power spectra density analysis indicated a reduced surface height and a surface flattening for all spatial wavelength components covered by AFM measurements.

¹Y. Ohtomo *et al.*, Surf. Interf. Anal. **44** (2012) 670.

²Saijian Ajia et al., submitted to Appl. Phys. Express.

³F. Frost *et al.*, J. Phys. Condens. Matter **21**, 224026 (2009).