カスケード型長周期光ファイバグレーティングのチャネルスペクトルの温度依存性

Temperature dependence of channeled spectra of cascaded chirp long period fiber gratings

防衛大¹, 島根大² ^Oマヌエル グテレス ソアレス¹, 福嶋 匡謙¹, ブイ クォック ハン¹,

仲矢 光希¹, 和田 篤¹, 田中 哲¹, 伊藤 文彦²

National Defense Academy¹, Shimane University² ^oManuel Guterres Soares¹, Koken Fukushima¹, Bui Quoc Hung¹, Koki Nakaya¹, Atsushi Wada¹, Satoshi Tanaka¹, Fumihiko Ito²

E-mail: em58049@nda.ac.jp

1. はじめに

我々はこれまで、特殊な光ファイバグレーティ ング素子であるカスケード型チャープ長周期光フ ァイバグレーティング(C-CLPG)を用いたセン サの開発を目的として、これを用いた温度やひず み等の各種のセンシング手法[1,2]を提案してきた. 本研究では、各種用途に応じた C-CLPG の開発を 念頭に C-CLPG の透過チャネルスペクトルの温度 特性について詳細に調べた.

2.原理

C-CLPG は Fig. 1 に示すように、1 つのファイバ 中に同一特性をもつ2 つの CLPG を間隔 D を空け てグレーティングを形成することによって作製さ れ、その透過率スペクトルにおいて、チャネルス ペクトルが CLPG の損失ピークに重なるように現 れる.これは、1 つ目の CLPG で分かれたコアモ ードとクラッドモードが 2 つ目の CLPG で再結合 した際の干渉効果によるものである.また、CLPG 間隔 D を拡げることで、より細かい周期をもつチ ャネルスペクトルが得られる.

3. 実験及び結果

実験では、C-CLPG の透過チャネルスペクトル の周囲の温度変化に依存するスペクトルシフトの 様子を光スペクトラムアナライザを用いて測定し た.例として、Fig.2 に C-CLPG3 (D = 140 mm) の室温における透過チャネルスペクトルを、Fig.3 にその温度に対する周波数シフトの測定結果を示 す.異なる間隔 D で作製した C-CLPG の温度に対 する周波数シフト (波長シフト) についても、測 定結果を Table.1 にまとめた.4 種類の C-CLPG の 温度に対する周波数シフト感度については、 $D \sim$ の依存性は小さいものと考えられる.さらに C-CLPG3 の次数 $m \sim$ の依存性を調べると、2.27× $10^2 (m = 4), 2.20 \times 10^2 (m = 5), 2.46 \times 10^2 (m = 6)$ THz/Cであり、これらの次数では、ほぼ同じ 温度に対するシフト感度が得られた.

4. まとめ

ここでは、4 種類の C-CLPG を作製し、それらの透過チャ ネルスペクトルの温度への依 存性について詳細に調べた. その結果、温度に対するスペ クトルのシフトは温度に比例 しており、周波数領域でみる と、m や D (60~180 mm) へ の依存性が小さいと考えられ ることが分かった.

参考文献

[1] 竹山 他: 第79回秋季応物予稿集, 20a-PB5-6 (2018).

[2] 福嶋 他:第66回春季応物予稿集, 12a-M166-6 (2019).

Table 1. Fabrication parameters and temperature dependences of C-CLPGs.

	C-CLPG1	C-CLPG2	C-CLPG3	C-CLPG4
CLPG 間隔(D)[mm]	60	100	140	180
グレーティング数 (N)	24	20	20	24
グレーティング間隔(Λ) [μm]	300-305	300-304	300-304	300-305
× 10 ⁻² THz / °C , ($m = 6$)	2.37	2.51	2.46	2.55
× 10 ⁻¹ nm / °C , ($m = 6$)	-1.89	-1.98	-1.91	-1.92