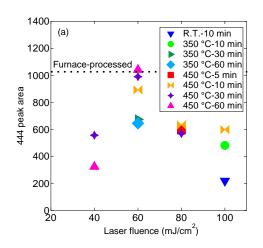
光 MOD 法により成膜した Bi, Ga: Nd₃Fe₅O₁₂ 薄膜の特性評価

Characterizations of Bi,Ga:Nd3Fe5O12 films grown

by means of an excimer-laser assisted metal-organic deposition process 長岡技大 ¹, 高純度化学 ², 産総研 ³ [○]西川雅美 ¹, 相場遥佳 ¹, 袖山和斗 ¹, 河原正美 ²、 中島 智彦 ³, 土屋哲男 ³, 石橋隆幸 ¹,

Nagaoka Univ. of Tech. ¹, Kojundo Chem. Lab. ², AIST ³, ^oMasami Nishikawa ¹, Haruka Aiba ¹, Kazuto Sodeyama ¹, Masami Kawahara ², Tomohiko Nakajima ³, Tetsuo Tsuchiya ³, Takayuki Ishibashi ¹ E-mail: nishikawa@vos.nagaokaut.ac.jp

【緒言】Bi 置換希土類鉄ガーネットは、優れた磁気光学効果を示すため、磁場分布を可視化するイメージングプレートに利用されている 11 。今後、高分子等のフレキシブル基板を用いて、湾曲面の磁場分布の可視化を実現するにあたり、磁性ガーネット膜を低温で作製することが求められる。そこで、我々は、プロセス温度の低温化を目指して、光 MOD 法により、単結晶 $Gd_3Ga_5O_{12}(GGG)$ 基板上に、 $Nd_{0.5}Bi_{2.5}Fe_{4.5}Ga_{0.5}O_{12}$ 膜を作製し、得られた薄膜の結晶性と磁気光学特性を評価した。【実験】組成比 Nd: Bi: Fe: Ga=0.5: 2.5: 4.5: 0.5 の MOD 溶液(高純度化学研究所社製)を GGG (111) 基板にスピンコートし、100 Cで 10 分間乾燥した後、450 C で 10 分間の仮焼成を行った。


その後、基板温度を室温、350、450 ℃にして、波長 248 nm の KrF レーザ(コヒレント社製)を、仮焼成後 の膜の上から照射した。周波数は10 Hz とした。

【結果と考察】XRD 測定より、様々な条件においてガーネット相の 444 回折ピークが確認された。図 1 (a) に、444 回折ピーク面積と、レーザフルエンスの関係を示す。参照のため、650 $^{\circ}$ $^{\circ}$ $^{\circ}$ の熱処理によって作製した薄膜のピーク面積を点線で示す。基板温度が450 $^{\circ}$ $^{\circ}$

謝辞 本研究は、科研費基盤研究(A)(18H03776)の 助成により行った。

参考文献

 Y. Nagakubo, T. Ishibashi et al., Jpn. J. Appl. Phys., 57 (2018) 09TC02/1-5.

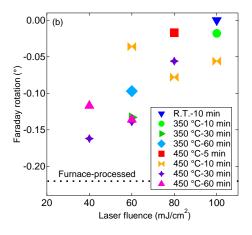


図1 レーザフルエンスと(a)444 回折ピーク面積、 (b) ファラデー回転角の関係