Detection of orbital angular momentum-induced beam shifts by weak measurement

Wenjin Long^{1,4}, Jintao Pan¹, Xinyi Guo¹, Xiaohe Liu¹, Haolin Lin², Huadan Zheng¹, Jianhui Yu¹, Heyuan Guan¹, Huihui Lu¹, Yongchun Zhong², Shenhe Fu², Li Zhang³, Wenguo Zhu^{1,2} and Zhe Chen¹

¹Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou 510632, China ²Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China ³School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China Author email address<u>⁴1129597435@qq.com</u>

Abstract: Weak measurement for orbital angular momentum (OAM)-induced spatial shifts of vortex beams are still confusing. The beam shift will be amplified by selecting the appropriate pre-selected and post-selected states. Here the maximum shifts are theoretically predicted and experimentally verified with optimal preselection and postselection states.

KeyWords: orbital angular momentum; beam shifts; weak measurement

1. Experimental and theoretical comparison of the amplified OAM-induced shifts

Fig. 1. (a) Experiment setup for the measurement of OAM-induced shifts by weak technique. The experiment (dots) and theoretical (lines) results of the amplified OAM-induced GH (b) and IF (c) shifts changing with the angle of GLP ϕ .

Fig. 2. (a) Comparisons of the experiment (first and third rows) and theoretical (second and forth row) intensity patterns of transmitted beam from GLP2. The amplified OAM-induced GH (b) and IF (d) shifts changing with the incident OAM for ϕ_1 =179.7° and 180.7°. (d) The experiment (dots) and theoretical (lines) results of the amplified OAM-induced GH (d,f) and IF (e,g) shifts changing with ϕ_1 for ϕ_2 =45° (d,e) and ϕ_2 for ϕ_1 =163.3° (f,g).

2. Conclusions

By properly choosing the preselection and postselection states, the OAM-induced GH and IF shifts can be maximized. Specially, the IF shifts can always be maximized for an arbitrary angle larger than 15°. The IF shift is up to 121.16 μ m of for ℓ =5, ϕ_1 =163.3°, ϕ_2 =45°. The maximum shifts increase with the incident OAM gradually, thus can be used to identify the OAM precisely.