Chemical Concentration Dependence of MoCl\textsubscript{5} Intercalation to Bilayer Graphene

O(D)Ekkaphop Ketsombun1, (D)Xiangyu Wu3,4, Inge Asselberghs4, (D)Swati Achra3,4, Cedric Huyghebaert4, Dennis Lin4, Zsolt Tokei4, and Kazuyoshi Ueno1,2

Shibaura Institute of Tech.1, SIT-RCGI2, KU Leuven3, imec4

E-mail: ueno@shibaura-it.ac.jp

Introduction: Improved electrical properties of multilayer graphene (MLG) and bilayer graphene (BLG) by MoCl\textsubscript{5} intercalation have been expected for a low-resistance narrow interconnect [1, 2]. In our previous study, the temperature of MoCl\textsubscript{5} intercalation into BLG can be reduced down to 150\textdegree C by using the higher chemical concentration than previous reports, and the electrical properties was significantly improved after intercalation[2-4]. However, the nano-patterned interconnects were damaged from the intercalation process. To reduce the damage, we have reduced the chemical concentration for the low-temperature MoCl\textsubscript{5} intercalation and analyzed the doping efficiency and damage on the BLG area.

Experiment: The BLG was grown by CVD on Pt film and subsequently transferred to SiO\textsubscript{2}/Si substrate. The sample was set in a glass capsule with high concentration (MoCl\textsubscript{5} 0.3412 g and MoO\textsubscript{3} 0.0665 g) or 1/2 reduced chemicals. Before the intercalation reaction, the capsule was pre-annealed at 110\textdegree C for 120 min. The reaction temperature was varied as 150\textdegree C and 175 \textdegree C for 60 min. After the intercalation process, the sample was analyzed by Raman spectroscopy and optical microscope observation.

Results and Discussion: Fig. 1 shows the G-band spectra of the BLG area by Raman after the intercalation process for 60 min. At 150\textdegree C, BLG was intercalated using the high concentration chemicals, but was not intercalated using the 1/2 reduced chemicals. With the reduced chemicals, BLG was intercalated by raising the temperature to 175\textdegree C as shown in Fig. 1. Fig. 2 shows the comparison of intercalation uniformity in BLG between the high and reduced concentration at 150\textdegree C, showing that the uniformity was degraded by reducing the concentration. The higher temperature or longer reaction time may be required to improve the doping performance with the reduced chemicals. Fig. 3 shows the optical images after intercalation for 60 min. Although serious damage was observed with the high concentration, the damage was suppressed with the reduced chemicals both at 150 and 175\textdegree C. From the results, the optimized condition (reduced chemicals at 175\textdegree C) is considered as more appropriate for doping narrow graphene interconnects.

This work is supported by SIT Research Center for Green Innovation.