電子エネルギー損失分光法による PZT 薄膜の結合状態の分析 Bonding State Analysis of PZT Thin Films by STEM-EELS

^O東北大学金属材料研究所¹,東北大学大学院工学研究科² ^O木口 賢紀¹, (M2)清水 匠², (M1) 粟飯原 雅矢², 白石 貴久¹, 今野 豊彦² ¹Institute for Materials Research, Tohoku University ²Department of Material Science and Engineering, Tohoku University ^oTakanori Kiguchi,¹ Takumi Shimizu,² Masaya Aihara,² Takahisa Shiraishi,¹ Toyohiko Konno¹ E-mail: tkiguchi@imr.tohoku.ac.jp

【背景】PbZr_{1-x}Ti_xO₃(PZT)は、代表的な強誘電体であり圧電デバイスなどとして応用されている。特に、組成相境界(MPB)と呼ばれる Zr/Ti 組成域において、菱面体晶相と正方晶相、単斜晶相などが共存し、各相境界において自発分極の向きと大きさが徐々に変化する構造傾斜領域が巨大誘電・圧電特性の起源と考えられている¹⁻²⁾。演者らは STEM 法を利用して SrTiO₃(001)単結晶基板上に成膜したPb(Mg_{1/3}Nb_{2/3})O₃-PbTiO₃薄膜やPZT 薄膜において、MPB 組成域がバルク PZT より拡大すること、ミスフィット転位によって誘起される残留歪みによりナノドメインが形成されていることを報告した^{3,4)}。この MPBのシフトは歪みによる結合状態の変化の帰結であるので、PZT における各相の安定性を考えるに当たり、結合状態、特に Pb6p-O2p および Ti3d/Zr4d-O2p 軌道間の混成の程度や結晶場が相安定性の指標の1つとなる。本講演では、基板の弾性的拘束下にある PZT エピタキシャル薄膜の各結晶相の結合状態が、Zr/Ti 組成比に対してどのように変化するか STEM-EELS 法によって詳細に解析し、化学結合の立場からMPB 組成のシフトについて明らかになった知見について報告する。

【実験方法】Pb_{1.1}TiO₃(PTO)及び Pb_{1.1}ZrO₃(PZO)組成の MOD 溶液を混合して所望の Zr/Ti 組成比の MOD 溶液を調整し、SrTiO₃(001)基板上にスピンコート・乾燥・熱分解の後、650℃で RTA による 結晶化を行った。以上の工程を 5 回繰り返して薄膜を作製した。STEM-EDS/EELS 法により薄膜中 の Zr/Ti 組成比やエネルギー損失吸収端微細構造(ELNES)を評価した。ELNES の解釈は DFT 法で行 った。XRD 法とSTEM 像の局所歪み解析(GPA)により相の同定を行った。

【結果】Fig.1(a)に MPB 組成 PZT3070 (Zr/Ti=30/70)の薄膜断面 の(a)LAADF-STEM 像を示す。2 相共存組織を反映する回折コ ントラストを示している。Fig.1(a)菱面体晶相(R)と正方晶相 (T)の領域で測定した Ti-L3 エッジのエネルギー損失吸収端微細 構造(ELNES)を Fig.1(b)に示す。比較のため菱面体晶相の PZT6040、正方晶相 PTO、直方晶相 PZO の ELNES も併せて示 した。Zr/TiO₆ 八面体配位構造における結晶場によって、5 重に縮 退した d 軌道の縮退が解けて L3 エッジは低エネルギー側から主 に t_{2g},eg の 2 本のピークに結晶場分裂、さらに立方対称(Oh)場か らの歪みによって各ピークに僅かな分裂が生じ、半値幅の広がり として現れている。t_{2g},eg 間の結晶場分裂幅(CFS)は PTO<R-PZT3070<T-PZT3070<R-PZT6040 であった。以上の結果は、PZT の結晶場分裂幅から、結晶相の判別や組成による配位構造の相 対的な変化を評価できることを示している。

【謝辞】本研究は JSPS 科研費 JP19H02421, JP19H04531, JP17K18970, 加藤財団科学振興会 KS-3115の支援を受けた。 【参考文献】1) H. Fu et al., Nature, 403, 281 (2000). 2) S. Wada et al., Bri. Cera. Trans., 103, 2 (2004), 3) T. Kiguchi et al., 56,10PB12 (2017). 4)木口ほか 応用物理学会第 66 回春季講演大会(2019).

Fig. 1 (a) LAADF-STEM image of PZT30/70thin film deposited on STO, and (b) Ti-L3 ELNES of rhombohedral and tetragonal phases of the films with references of rhombohedral PZT6040, tetragonal PTO and orthorhombic PZO thin films prepared by the same method.