hBN/1L-WSe₂/hBN 構造の光取り出し効率の改善

Improvement of light outcoupling from hBN/1L-WSe₂/hBN heterostructures 東京都市大¹, NIMS², 東大生研³, CREST-JST⁴

⁰林田隼弥¹, 渡邊賢司², 谷口尚², 増渕覚³, 守谷頼³, 町田友樹^{3,4}, 澤野憲太郎¹, 星裕介¹

Tokyo City Univ.¹, NIMS², Univ. of Tokyo³, CREST-JST⁴

^OShunya Hayashida¹, Kenji Watanabe², Takashi Taniguchi²,

Satoru Masubuchi³, Rai Moriya³, Tomoki Machida^{3,4}, Kentarou Sawano¹, Yusuke Hoshi¹

E-mail: g1981259@tcu.ac.jp

2 次元半導体材料である遷移金属ダイカルコゲナイド(TMD)は単層の場合、バンド構造が直接遷 移型であり、大きい励起子束縛エネルギーの影響で、室温においても強い励起子発光が生じる[1]。 また、近年 TMD を六方晶窒化ホウ素(hBN)で封止した構造は、基板材料から生じるラフネスの影響 や、不純物の影響を抑制でき、光電子素子の高性能化に向けて高いポテンシャルがあると考えられ ている。一方、SiO₂/Si 基板上に TMD を堆積した場合、光学的干渉効果の影響により SiO₂ 膜厚の変 化が TMD からの発光強度に大きく影響すると報告されており[2]、hBN 封止構造においても、hBN 膜厚が発光強度に強く依存することが懸念される。そこで本研究では、単層 WSe₂(1L-WSe₂)の hBN 封止構造において、hBN 膜厚が発光強度に与える影響について調べた。

WSe₂および hBN のバルク単結晶を用いて、劈開法により Polydimethylsiloxane(PDMS)シート上に 1L-WSe₂と多層 hBN を作製した。これらをドライトランスファー法で 100 nm 膜厚の SiO₂ 層を有す る Si 基板上に連続的に堆積することで、1L-WSe₂を hBN で封止した試料構造を形成した。この試料 構造では、表面側の hBN(トップ hBN)表面に複数のステップがあるため、一つの 1L-WSe₂ フレーク 内において hBN 膜厚の異なる領域が存在する(図 1(a))。

まず、AFM を用いて hBN 膜厚を測定したところ、ボトム hBN 膜厚は 110 nm、トップ hBN 膜厚 は図 1(a)の Area 1 において 100 nm、Area 2 において 40 nm であることが分かった。この二つの領域 に対して室温で PL 測定を行った(図 1(b),1(c))。両領域において 1.65 eV 付近にエキシトン発光(X0) ピーク、1.6 eV 付近にトリオン発光(T)ピークが見られており、X₀ピーク強度が Area 1 では Area 2 よりも2 倍程度大きいことが分かった。1L-WSe₂は各領域において同一のフレークであることから、 発光強度の違いは結晶品質によるものではなく、トップ hBN 膜厚の違いによる光学的干渉効果が影 響していると考えられる。そこで、フレネル反射の式を用いて、試料構造内部での多重反射を考慮 し PL 強度の計算を行った。図 2 にボトム SiO₂ 膜厚が 100 nm、hBN 膜厚が 110 nm で、トップ hBN 膜厚を変化させた場合の PL 強度の計算結果を示す。実験結果と計算結果が非常に良く一致しており、 1L-WSe₂の hBN 封止構造において光学的干渉効果が PL 強度に大きく影響することが分かる。詳し い計算方法や結果については当日報告する。

[1] A. Chernikov et al., Phys. Rev. Lett. 113, 076802 (2014). [2] D.H. Lien et al., Nano Lett. (2015).

Fig. 1(a) Optical microscope image and schematic of sample structure. PL spectra at room temperature for (b) Area 1 and (c) Area 2.

Fig. 2 Calculation and experimental results of PL intensity. The PL intensities are calculated for the sample structure with a SiO₂ thickness of 100 nm and a bottom hBN thickness of 110 nm.