レーザーカオス光による Sub-THz 波の酸化鉄内における透過特性 Sub-THz wave transmission characteristics in α-Fe₂O₃ 増田 章-¹, ⁰川上 由紀¹, 桒島 史欣² NIT (KOSEN), Fukui College¹, Fukui Univ. of Tech.²,

Shoich Masuda¹, °Yuki Kawakami¹, Fumiyoshi Kuwashima²

E-mail: kawakami@fukui-nct.ac.jp

1. まえがき

送・変電設備では、構造材として鋼材が広く用いら れている.鋼材には、防食を目的にめっきや塗装が施 されているが、経年とともに塗膜下腐食が誘発される. 塗膜下での発錆に関する知見は、効率的な補修作業計 画の立案や鋼材の寿命延伸に貢献できると期待される.

腐食検出には、電磁波の適用が有効であり、各種金 属酸化物は化学構造由来の固有吸収スペクトルをテラ ヘルツ(THz)帯に有することから、THz 波により塗膜下 の腐食を検出することができる[1].本研究では鋼材の 腐食を誘発する赤錆で最も存在数が多い α-Fe₂O₃ につ いて Sub-THz 帯での伝送特性を測定し、腐食検出に適 する電磁波の周波数帯について検討する.

2 . THz 波発生検出装置

THz 波時間領域分光システムとは,発生した THz 波 をサンプルに入射させ,サンプルを透過した後の THz 波の波形を時間ごとに計測し,その波形をフーリエ変 換することにより周波数ごとの振幅と位相を得るとい う分光法である.本研究では検出側の経路長を微小変 化し,相互相関を取ることで時間波形を計測している.

図1にレーザーカオス光を用いた THz 波発生の実験 系を示す.レーザーの出力は、ビームスプリッターに より外部鏡に分割される.外部鏡で反射された光がレ ーザーに戻ることにより、光学的遅延がレーザーに加 わり、レーザーカオス光が発生する.THz 電磁波は検 出素子により電流として取り出され、それをロックイ ンアンプで測定する.発生装置に AC70Vpp で周波数 40kHz の正弦波を加える.可動鏡を一回の測定毎に 0.04mm 移動させる.移動ごとの停止時間を 0.6 秒とし てデータ測定を 2048 回行う.

3.酸化鉄内での THz 波透過特性

サンプルの厚さを 2mm とし, 透過特性の測定を行った. 図 2(a)は空気中の場合, 図 2(b)は α-Fe₂O₃の場合 の測定結果である. 横軸は周波数,縦軸はスペクトル 振幅(任意単位[a.u.])を表している.本研究では,特に スペクトル強度の高い周波数 47.6GHz, 93.4GHz, 0.14THz のそれぞれの信号強度から空気に対する比透 過率(%)を計算した.比透過率の結果を図 3 に示す. 図 3 より,サンプル厚さが 2mm の場合における比透過率 は,周波数 47.6GHz のときに 94%, 93.4GHz のときに 78%, 0.14THz のときに 85%となった. 今回測定した 周波数の中では, 93.4GHz において赤錆による吸収特 性が最も高い.

4. むすび

半導体レーザーカオスを用いた THz 波発生検出装

置の製作を行い、腐食を誘発しやすい赤錆(α-Fe2O3)の

Eの製作を打い、腐良を誘発しやりいが朝(d-Fe203)の Sub-THz 波の透過特性の測定を行った.本研究では THz 波の発生に成功し、スペクトル強度の強い3つの 周波数を取り出すことに成功した.その最大周波数は 0.14THz であり、Sub-THz 帯まで見ることが出来た. また、93.4GHz において赤錆中の比透過率が低くなっ ており、赤錆による吸収特性がみられた.

文献

[1] テラヘルツ波による塗膜下腐食検出と複雑光応用の可能
性,布施,レーザー研究第45巻第3号,P.165-169.