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1. Introduction 

The effects of squeezing have been of great importance 

in quantum computing [1], as evidenced in the studies of 

squeezed light presented in the literature [2]. The present 

work discusses on the possibility of enhancing squeezing 

using nonlinear coupler utilizing different operating fre-

quencies of the input modes. In our two-channel model, one 

of the channels contains the fundamental mode, whereas the 

other one confines the next two higher-order modes. Here 

we examine numerically the effect of frequency mismatch 

on the dynamics of the generated squeezed light. 

 

2. Theoretical Aspects 

Figure 1 shows the model considered here. The Hamil-

tonian for the system can be written as [3,4] 
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Fig. 1.  Model of the three-modes co-directional Kerr nonlinear coupler. 

Here the former Hamiltonian †ˆ ˆb b  is the ladder operator, 

is the reduced Plank constant, ω is the input frequency, g 

is the self-action Kerr coupling and k is the linear evanes-

cent coupling. Using the positive P representation, we de-

rived the exact Fokker-Planck equation without the loss of 

generality, which is then converted to an equivalent set of 

Stochastic equations, following the standard Ito calculus. 

Squeezing is numerically examined in term of the quadra-

ture evolution, given by 
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where fluctuations below zero indicate the presence of sin-

gle-mode squeezing [4]. 

 

3. Discussion 

Figure 2a exhibits the comparison between squeezing 

with and without frequency mismatch in the first channel 

using coherent initialization. The maximal squeezing is 

sensitive to the frequency difference Δω1,2 between the 

modes in different channels, and squeezing increases due to 

frequency mismatch. Figure 2b depicts comparison of the 

first quadrature evolution for all modes (Δω1,2 ≠ 0). Alt-

hough only one quadrature evolution is portrayed, the 

squeezed quadrature between two variances are closely 

identical. Maximal squeezing appeared at the fundamental 

mode of channel two, where the excitation frequency is 

large. Figure 2c shows comparison between squeezing with 

and without frequency mismatch for coherent (first chan-

nel) and vacuum (second channel) excitations. The used 

combination of input parameters considering frequency 

mismatch provides the largest squeezing. Similar behavior 

is observed in the second channel; however, the amount of 

squeezing is minimal. As opposed to the maximal squeez-

ing obtained with coherent initialization in all channels, 

maximal squeezing appeared in the first channel where the 

frequency excitation is the smallest, as shown in fig. 2d. 

 
Fig. 2.  Squeezing vs. dimensionless parameter kz; z being the direction 

of propagation. (a) Both quadrature in the first channel with and without 

frequency difference, (b) the first quadrature for all modes with frequency 

difference, (c) the first quadrature in the first channel with frequency 

difference, (d) the first quadrature for all modes with frequency difference. 

Input parameters are Δω1 = ω2  ω1, Δω2 = ω3  ω1, k1 = k2 = k =1, g = 0.01. 

 

4. Conclusion  

The results reveal the system as providing an effective 

way to obtain enhanced squeezing. Such interaction scheme 

can be potentially useful to further improve squeezing in 

other configurations like multichannel- Kerr and second- 

harmonic generation [5,6].  
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