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In our previous study[1], we derived a theoretical formula of the entropy production rate for 

ambipolar conductors: 
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which showed that spin injection in ambipolar conductor results in the flow of two types of spin 

current, parallel spin current 𝑱𝑠
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 and both contribute to 

the entropy production. Also spin injection in bipolar conductor induces imbalance between up spin 

and down spin chemical potentials of electrons and holes. When spin injection is achieved under 

constant temperature and pressure, the Gibbs-Duhem relation can be applied to bipolar conductors for 

getting a relationship between chemical potential of electrons 𝜇(𝑒) and holes 𝜇(ℎ). In terms of carrier 
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(𝑑𝜇↑
(ℎ)

+𝑑𝜇↓
(ℎ)

+𝑑𝜇↑
(𝑒)

+𝑑𝜇↓
(𝑒)

)+𝛷(𝑑𝜇↑
(ℎ)

+𝑑𝜇↓
(ℎ)

- 𝑑𝜇↑
(𝑒)

- 𝑑𝜇↓
(𝑒)

)+𝑃(−𝑑𝜇↑
(ℎ)

+𝑑𝜇↓
(ℎ)

+ 𝑑𝜇↑
(𝑒)

- 𝑑𝜇↓
(𝑒)

) 

+ 𝛷𝑃(𝑑𝜇↑
(ℎ)

- 𝑑𝜇↓
(ℎ)

- 𝑑𝜇↑
(𝑒)

+ 𝑑𝜇↓
(𝑒)

)= 0.                                                                             (2)                   

In the above formulation we consider that −𝑃(ℎ) = 𝑃(𝑒) ≡ 𝑃 ≠ 0; in the previous study [2] we 

considered 𝑃(ℎ) = 𝑃(𝑒). Now we assume that 𝑑𝜇↑
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= − 𝑑𝜇↓
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(≡ −∆𝜇(𝑒)). By applying these assumptions in Eq. (2) yields:  (1 + 𝛷)𝛥𝜇(ℎ) + (1 −

𝛷)𝛥𝜇(𝑒) = 0. In the bipolar conductors with very small charge polarization value (𝛷 ≪ 1), the above 

equation reduces to ∆𝜇(ℎ) − ∆𝜇(𝑒) = 0. Substituting this relation in Eq. (1) gives: 
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Eq. (3) indicates that parallel spin current contributes to entropy production and it is analogous to 

single carrier case while antiparallel spin current does not take part in entropy generation because it is 

not accompanied with the spatial increment of Gibbs free energy during the flow of antiparallel spin 

current hence no spin relaxation is required for continuous flow of antiparallel spin current. 
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