Ultra-low power bias-driven magnetization switching by quasi-Fermi level control at an interface of a La_{0.67}Sr_{0.33}MnO₃-based magnetic tunnel junction

L. D. Anh^{1,2}, T. Yamashita¹, H. Yamasaki¹, D. Araki¹, M. Seki^{1,3}, H. Tabata^{1,3}, M. Tanaka^{1,3} and S. Ohya^{1,2,3} ¹Department of Electrical Engineering and Information Systems, The University of Tokyo ²Institute of Engineering Innovation, The University of Tokyo ³Center for Spintronics Research Network (CSRN), The University of Tokyo

Controlling the magnetic anisotropy (MA) by a bias voltage is important for reducing the power consumption of magnetization switching in spin devices. In ferromagnetic (FM) materials, the MA is strongly correlated to the symmetry of the magnetization-direction dependence of the density of states (DOS) around the Fermi level [1]. This correlation thus suggests that we can achieve highly effective control of MA of the FM materials by applying a bias voltage and moving the Fermi level between band components with different orbital symmetries. Here in a La_{0.67}Sr_{0.33}MnO₃ (LSMO)-based magnetic tunnel junction (MTJ), we demonstrate a magnetic-field-free 90°-magnetization switching solely by applying an extremely small electric field of 0.05 V/nm on the tunnel barrier. This electric field moves the Fermi level from the e_g band to the t_{2g} band at the interface between LSMO and the tunnel barrier, and induces a sharp change in the in-plane MA.

The studied MTJ consists of LSMO [18 unit cell (u.c.)] / SrTiO₃ (STO, 10 u.c.) / LSMO (40 u.c.) grown on an STO (001) substrate by molecular beam epitaxy [see Fig. 1(a)]. We probed the MA of the LSMO layers by measuring the $\theta_{\rm H}$ -dependence of tunneling magnetoresistance (TMR), where $\theta_{\rm H}$ is the in-plane angle of the magnetic field H measured from [100]. The TMR ratio depends on the relative angle $\Delta\theta$ between the magnetization vectors of the top (**M**_t) and bottom (**M**_b) LSMO layers. When increasing the bias voltage V applied to the MTJ from 15 mV to 200 mV, which corresponds to a transition of the quasi Fermi level from the e_g band to the t_{2g} band [2], we found that the MA of the top LSMO switches from a two-fold symmetry to a four-fold symmetry [Fig. 1(b)]. Due to this MA switching, the easy axis of M_t along [110] at V = 200 mV becomes a hard axis at V = 15 mV, while the [$\overline{1}10$] axis is always an easy axis. Thus, the magnetization initially pointed toward [110] at V = 200 mV is rotated toward [110] when V is changed to 15 mV, and remains in that position ($[1\overline{1}0]$) even after V is returned to 200 mV. This bias-driven magnetization rotation of LSMO was detected by monitoring the change in tunneling resistance R at zero magnetic field when varying V in the following sequence: 200 mV \rightarrow 15 mV \rightarrow 200 mV [Fig. 1(c)] after initializing the \mathbf{M}_{t} and \mathbf{M}_{b} in the [110] direction by a strong **H**. The *R* values before and after the bias sequence changed by ΔR_2 that corresponds to a rotation of Mt by 87.7° without the need of any assisting magnetic field. The operation requires an infinitesimal current density of ~ 10^{-2} A/cm², which is ~8 orders of magnitude smaller than that in the present magnetic random access memory [3].

This work was partly supported by Grants-in-Aid for Scientific Research, CREST program of Japan Science and Technology Agency, and Spintronics Research Network of Japan (Spin-RNJ). **References:** [1] H. Saito *et al.*, Phys. Rev. Lett. **95**, 086604 (2005). [2] L. D. Anh *et al.*, Sci. Rep. **7**, 8715 (2017). [3] L. D. Anh *et al.*, submitted.

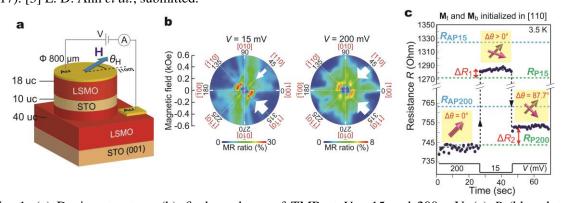


Fig. 1. (a) Device structure. (b) $\theta_{\rm H}$ -dependence of TMR at V = 15 and 200 mV. (c) R (blue dots) measured at zero **H** with a bias sequence of $V = 200 \text{ mV} \rightarrow 15 \text{ mV} \rightarrow 200 \text{ mV}$ after initializing the $\mathbf{M}_{\rm t}$ and $\mathbf{M}_{\rm b}$ along [110]. $R_{\rm P200} (R_{\rm P15})$ and $R_{\rm AP200} (R_{\rm AP15})$ express the R values at $\mathbf{H} = 0$ when $\mathbf{M}_{\rm t}$ and $\mathbf{M}_{\rm b}$ are initialized in the parallel and antiparallel configurations at V = 200 mV (15 mV), respectively.