Enhanced effective damping constant in Mn based nitride compounds NIMS¹, Univ. of Tsukuba², °S. Isogami¹, A. Anzai², T. Gushi², T. Komori², Y.K. Takahashi¹ and T. Suemasu² E-mail: isogami.shinji@nims.go.jp

Mn based nitrides such as Mn₄N has been recently focused due to its ferrimagnetism, low M_s (~100 emu/cm³), high perpendicular magnetic anisotropy (PMA) ($K_u \sim 1$ Merg/cm³).^[1] Furthermore, such the values can be widely modulated by embedded transition metals.^[2] However, effective damping constant (α_{eff}) have not been evaluated while α_{eff} could give an insight into spin device engineering. In this study, α_{eff} for the FeMnN films with various Mn content were compared, and discussed the mechanisms involved.

30-nm-thick Fe_{4-x}Mn_xN (x = 0, 1, 2, and 4) pseudo single-crystal films were grown on MgO(001) substrates by molecular beam epitaxy. Out-of-plane magnetic properties were investigated by measuring transverse resistivity (ρ_{xy}) of the films (Fig. 1a). a_{eff} was estimated both from the linewidth of microwave absorption spectra and the oscillation frequency of time-resolved magneto optical Kerr signals. All the measurements were performed at room temperature.

Figure 1(a) shows the out-of-plane magnetic field dependence of ρ_{xy} . It was revealed that magnetization easy-axis corresponds to in-plane for the x = 0, 1 and 2, while out-of-plane for x = 4, indicating that perpendicular magnetic anisotropy was enhanced with increasing Mn content. Figure 1(b) shows the xdependence of α_{eff} . The $\alpha_{\text{eff}} \sim 0.03$ was obtained for the x = 0 (Fe₄N), which agreed with the previous value.^[3] The α_{eff} decreased down to 0.01 for the x = 1, then monotonic increase was observed up to the x =4. Possible mechanisms will be discussed at the conference, but note that $\alpha_{\text{eff}} \sim 0.15$ for the x = 4 was two orders of magnitude higher compared with the other Mn based metallic alloy systems such as MnGa.^[4] These results suggest that Mn₄N might be one of the material candidates for spin injection layers in mag-flip spin torque oscillators^[5] and/or reference layers in magnetic tunnel junctions with PMA.

Fig. 1 (a) Out-of-plane magnetization curves of FeMnN films. (b) Effective damping constant (α_{eff}) measured using ESR and TR-MOKE (pump-probe method).

[1] K. Ito et al., AIP advances 6, 052601 (2015). [2] S. Isogami et al., Jpn. J. Appl. 57, 120305 (2018).

[3] S. Isogami *et al.*, J. Magn. Soc. Jpn. 38, 162 (2014). [4]S. Mizukami *et al.*, Phys. Rev. Lett. 106, 117201 (2011) [5] S. Bosu *et al.*, Appl. Phys. Lett. 108, 072403 (2016).

References: