All－optical three－dimensional molecular orientation with combined linearly and elliptically polarized two－color laser fields

（The University of Tokyo）Md．Maruf Hossain and \bigcirc Hirofumi Sakai
E－mail：maruf＠light．phys．s．u－tokyo．ac．jp

Orientation of linear asymmetric molecules can be achieved by using a linearly polarized two－color laser field［1，2］．All－optical three－dimensional molecular alignment and orientation can also be realized by applying linearly polarized two－color laser fields，where the polarizations of the fundamental pulse and the second harmonic pulse are crossed［3，4］．Here，we propose a novel approach of realizing all－ optical three－dimensional molecular orientation，where a linearly polarized fundamental pulse and an el－ liptically polarized second harmonic pulse are applied： $\mathbf{E}(t)=\left[E_{\omega}(t) \cos (\omega t)+E_{2 \omega}(t) \cos (2 \omega t+\Phi)\right] \hat{z}+$ $E_{2 \omega}^{\prime}(t) \sin (2 \omega t+\Phi) \hat{x}[5]$ ．Here，$E_{\omega}(t)$ is the time profile of the fundamental pulse．$E_{2 \omega}(t)$ and $E_{2 \omega}^{\prime}(t)$ are the time envelopes along the major and minor axes of the elliptically polarized second harmonic pulse， respectively．The interaction potential，after taking an average over one ω－laser oscillation，is given by：

$$
\begin{align*}
\hat{H}_{i}= & -\frac{1}{4} \alpha_{z y}\left[\cos ^{2} \phi \sin ^{2} \theta E_{2 \omega}^{\prime 2}(t)+\cos ^{2} \theta\left(E_{\omega}^{2}(t)+E_{2 \omega}^{2}(t)\right)\right] \tag{1}\\
& -\frac{1}{4} \alpha_{x y}\left[(\cos \phi \cos \theta \cos \chi-\sin \phi \sin \chi)^{2} E_{2 \omega}^{\prime 2}(t)+\cos ^{2} \chi \sin ^{2} \theta\left(E_{\omega}^{2}(t)+E_{2 \omega}^{2}(t)\right)\right] \\
& \pm \frac{3}{8}\left(\beta_{z x x} \cos ^{2} \chi+\beta_{z y y} \sin ^{2} \chi\right) \cos \theta \sin ^{2} \theta E_{\omega}^{2}(t) E_{2 \omega}(t) \\
& \pm \frac{1}{8} \beta_{z z z} \cos ^{3} \theta E_{\omega}^{2}(t) E_{2 \omega}(t),
\end{align*}
$$

where the phase differences between the two wavelengths are $\Phi=\pi$ or 0 for a plus or minus sign， respectively，$\alpha_{z y}=\alpha_{z z}-\alpha_{y y}$ ，and $\alpha_{x y}=\alpha_{x x}-\alpha_{y y}$ ．The simulated degrees of alignment $\left\langle\left\langle\cos ^{2} \theta\right\rangle\right\rangle$ and orientation $\langle\langle\cos \theta\rangle\rangle$ for iodobenzene molecules as a function of the peak intensity of the fundamental pulse I_{ω} ，under the assumption of adiabatic approximation，are shown in Figs． 1 （a）and（b），respectively． In the calculations，the peak intensities along the major and minor axes of the elliptically polarized second harmonic pulse are also increased as a function of the peak intensity of the fundamental pulse： $I_{2 \omega}=1.1 I_{\omega}$ and $I_{2 \omega}^{\prime}=0.98 I_{\omega}$ ．

Fig．1：Degrees of（a）alignment $\left\langle\left\langle\cos ^{2} \theta\right\rangle\right\rangle$ and（b）orientation $\langle\langle\cos \theta\rangle\rangle$ of iodobenzene molecules as a function of the peak intensity of the fundamental pulse．

References：［1］T．Kanai and H．Sakai，J．Chem．Phys．115， 5492 （2001），［2］K．Oda et al．，Phys．Rev．Lett． 104， 213901 （2010），［3］N．Takemoto and K．Yamanouchi，Chem．Phys．Lett．451， 1 （2008），［4］K．Lin et al．，Nat． Commun．9， 5134 （2018），［5］M．M．Hossain，PhD thesis（The Univ．of Tokyo）（2019）．

