SnSb₂Te₄における圧力誘起超伝導 Pressure-induced superconductivity in SnSb₂Te₄ 宋 鵬^{1, 2}, 松本 凌^{1, 2}, Hou Zhufeng¹, 足立 伸太郎¹, 原 裕^{1, 2}, 齋藤 嘉人^{1, 2}, P. B. Castro^{1,2}, 竹屋 浩幸¹, 高野 義彦^{1, 2}

(1. 物材機構, 2. 筑波大)

Peng Song^{1, 2}, Ryo Matsumoto^{1, 2}, Zhufeng Hou¹, Shintaro Adachi¹, , Hiroshi Hara^{1, 2},

Yoshito Saito^{1, 2}, P. B. Castro^{1,2}, Hiroyuki Takeya¹, Yoshihiko Takano^{1, 2}

(1. NIMS, 2. Univ. of Tsukuba,)

BCS theory is one of the main theories of superconductivity. It predicts a relationship between the superconducting transition temperature T_c , Debye temperature θ_D , and electron density of state $D(\varepsilon_f)$ at the Fermi surface and the electron-phonon interaction U, which can be estimated from the electrical resistivity. For the $U D(\varepsilon_f) \ll 1$, according to BCS theory, Tc is given by: $T_c = 1.14\theta_D/(-1/U D(\varepsilon_f))$. In this case, by modifying the electronic density of states (DOS) at the Fermi level, it is possible to tune in the system into a superconducting state. Materials with narrow band gap can be easily tuned into a metallic state by applying pressure which in turn increase the density of state near the Fermi level. By searching a material database, we've selected a candidate material, SnSb₂Te₄, which is semiconductor with a narrow band gap of 0.259eV, calculated using Quantum Espresso 6.3. We supposed that SnSb₂Te₄ will exhibit superconducting phase in SnSb₂Te₄ at high pressure. Our study of the superconducting transition temperature evolution with pressure, shows a gradual increase of T_c with the applied pressure.

The single crystal of the SnSb₂Te₄ were grown using a conventional melting-growth method. The resistance under pressure of the sample was measured using an originally designed diamond anvil cell with

Boron-doped diamond electrodes^[1]. Figure 1 shows the thermal evolution of the resistance for SnSb₂Te₄ under ambient and pressures between 6.3 GPa and 32.6 GPa. At ambient pressure, the sample exhibited metallic behavior, differing from theoretical calculation. The superconducting transition appeared at 2.1 K(T_c^{onset}) under 8.1 GPa, which was further increased with applied pressure.

[1] R. Matsumoto et al., Rev. Sci. Instrum. 87, 076103 (2016)