Performance enhancement of dye sensitized solar cells using down/up-conversion nanoparticles

Kyushu Univ.¹, Inje Univ.², Korea: F.L. Chawarambwa¹, B. Zhang¹, K. Kamataki¹, N. Itagaki¹,

^OK. Koga¹, M. Shiratani¹, and H.Seo²

E-mail: l.f.chawarambwa@plasma.ed.kyushu-u.ac.jp

Dye sensitized solar cells (DSSC) generally use visible light for photo-electric conversion. In a DSSC, light absorption is conducted by a light sensitive dye. The ability of the dye to capture light in a wide band range of the light spectrum determines the conversion efficiency of the DSSC. The currently employed dyes in DSSC with the highest conversion efficiencies (N-719) have a light spectrum absorption range of 300-730 nm [1]. Consequently, the inability of these dyes to absorb ultra violet light (UV) and infrared (IR) light, which makes up to 52% of energy of the entire solar spectrum, forms the main energy loss mechanism of DSSC. To realize photo-current conversion from these light, rare-earth luminescent phosphors, which have large band gap, high refractive index, low phonon energy and chemical stability at high temperatures, are promising to circumvent the photon transmission losses [2]. This technology is expected to enable single junction photovoltaic cells break the Shockly-Queisser limit.

A facile urea based homogeneous precipitation method was employed for the fabrication of both up-converting (UP)(Y_2O_3 : Er^{3+}/Yb^{3+}) and down-converting (DC) (Y_2O_3 : Tb^{3+}/Eu^{3+}) nanoparticles. DSSC was fabricated via the conventional doctor blade method. Firstly, transparent TiO₂ colloids mixed 1 wt % Y_2O_3 : Er^{3+}/Tb^{3+} with colloids were deposited on the FTO glass to form a transparent photoelectrode. The samples were then sintered at 500°C for 2 hours. The TiO₂ colloids) mixed with 10 wt% Y_2O_3 : Yb^{3+}/Er^{3+} nanoparticles were subsequently screen-printed ontop of the first the TiO₂+ Y_2O_3 : Er^{3+}/Tb^{3+} film. The photoanode was then soaked in the N-719 dye solution for 24 hours. Eventually the sandwich-type DSSC were fabricated with platinum-coated FTO glass and iodine electrolyte.

Figure 1(a) shows photoluminescence spectra of UC nanoparticles under laser diode excitation (λ =980 nm). We confirmed green and red light which corresponded to Y₂O₃:Er³⁺/Yb³⁺ emission. **Figure 1(b)** shows photoluminescence spectra of DC nanoparticles under CW laser diode excitation (λ = 315 nm). We also confirmed both green and red light which corresponded to Y₂O₃:Eu³⁺/Tb³⁺ emission. This indicates that the up/down converters we developed are capable of transforming UV/NIR into visible light thereby contributing to more photogeneration and have the potential for enhancement of photovoltaic performance of DSSCs. The details will be presented at the conference.

[1] B. O'Regan and M. Gratzel, Nature, 353, 737 (1991).

[2] Y. Shang, et al., Nanomaterials, 1782, 2079-4991, (2015).

Fig. 1 Photoluminescence spectra of (a)UC and (b) DC nanoparticles.