Er³⁺, Ni²⁺共添加 Ca₃Ga₂Ge₃O₁₂ガーネットの広帯域応答アップコンバージョン発光 Broadband-sensitive upconversion emission of Er³⁺, Ni²⁺-co-doped Ca₃Ga₂Ge₃O₁₂ garnet 豊田中研 ⁰竹田 康彦, 水野 真太郎, ルイテル ホム ナト, 谷 俊彦

Toyota Central R&D Labs., Inc. [°]Yasuhiko Takeda, Shintaro Mizuno, Hom Nath Luitel, Toshihiko Tani

E-mail: takeda@mosk.tytlabs.co.jp

アップコンバージョン(UC)は太陽光エネルギーの利用効率を格段に向上させる方法の一つである。Er³⁺添加材料は波長 1.55 μm帯の光を 0.98 μm に変換するので結晶シリコン太陽電池に応用されるが、Er³⁺の吸収帯域が狭いため、太陽光スペクトルのごく一部しか利用できないことが欠点である[1]。我々は、ペロブスカイト構造をもつ La(Ga_{0.5}Sc_{0.5})O₃ [2], CaTiO₃ [3]などに Er³⁺と Ni²⁺を共添加することにより UC 応答の広帯域化を実現した。この場合、Ni²⁺は、結晶シリコンにも Er³⁺にも吸収されない 1.1–1.45 μm 光を吸収し、そのエネルギーをEr³⁺に移動させる増感材として機能する。この広帯域応答アップコンバーターの応用範囲を拡げるため、透明セラミックスの形成を目指して、立方晶である Gd₃Ga₅O₁₂(GGG)ガーネットを母材に用いて同様の広帯域UCを実現したが、発効効率は大幅に低下した[4]。そこで、効率低下の要因となるエネルギー散逸機構を解明し、これを抑制するために新たな母材である Ca₃Ga₂G3₃O₁₂(CGGG)ガーネットを用いた[5]。

図1はNi²⁺添加GGG, CGGGの拡散反射(R_d)スペクトルである。6配位Ni²⁺の吸収に加えて、GGGの場合には4配位Ni²⁺の吸収が現れた。4配位Ni²⁺の第1励起準位(³T₂(³F))はEr³⁺の第1励起準位(⁴T_{13/2})よりも低エネルギーに位置するので、励起されたEr³⁺から4配位Ni²⁺へのエネルギー散逸が生じる。4配位Ni²⁺のイオン半径(0.55 Å)は4配位Ga³⁺のイオン半径(0.47 Å)に近いので、添加されたNi²⁺の一部がGGG中の4配位Ga サイトを占めるのを避けられない。そこで、ガーネット構造中の4配位サイトをイオン半径がNi²⁺よりもはるかに小さいGe⁴⁺(0.39 Å)に置き換えたCGGGを母材に用いると、4配位Ni²⁺に起因する吸収が消滅した。

4 配位 Ni²⁺を除いた効果を確認するために、Er³⁺をパルス光励起した後の Stokes 発光強度の減衰曲線から Er³⁺から Ni²⁺へのエネルギー散逸速度を求めた結果が図 2 である。GGG に替えて CGGG を母材に用いること により、エネルギー散逸が抑制されたことがわかる。

 Er^{3+} の発光効率を向上させるためには、結晶場の歪を増強することが有効である。電気的中性を保ちながら 母材に含まれるイオンよりも大きさの異なるイオンを共添加した。加えて、 Er^{3+} , Ni^{2+} の添加量の影響を調べた。 その結果、 $(Ca_{0.6}Er_{0.1}Y_{0.1}Li_{0.2})(Ga_{0.98}Ni_{0.01}Nb_{0.01})Ge_3O_{12}の組成により、最も高効率の Ni^{2+}励起 <math>Er^{3+}$ UC 発光が 得られた。UC 発光の内部量子効率(IQE)スペクトルを図3に示す。Ni^{2+</sub>増感励起(励起波長1.1–1.4 μ m)の場 合と Er^{3+} 直接励起の場合の IQE がおおよそ一致することは、Ni²⁺から Er^{3+} へのエネルギー移動効率が1に近 いことを示唆する。これは Ni²⁺発光の時間分解分光により確認された。

本研究の一部は、JST 戦略的創造研究推進事業-先端的低炭素化技術開発(ALCA)の助成を受けた。

[1] J. A. Briggs, et al., JAP 113, 124509 (2013); C. M. Johnson, et al., IEEE J. Photovolt., 4, 799 (2014);

[2] Y. Takeda, et al., Appl. Phys. Lett. 108, 043901 (2016); Y. Takeda, et al., J. Lumin. 194, 778 (2018).

[3] H. N. Luitel, et al., RSC Adv. 6, 55499 (2016); H. N. Luitel, et al., RSC Adv. 7, 41311 (2017).

[4] Y. Takeda, et al., Jpn. J. Appl. Phys. 57, 08RF02 (2018).

[5] Y. Takeda, et al., J. Am. Ceram. Soc., https://doi.org/10.1111/jace.16193.

Fig. 1 Diffuse reflectance (R_d) spectra. Absorption bands of the six- and four-coordinated Ni²⁺ are indicated by filled and open arrows, respectively.

Fig. 2 Energy dissipation rate, $w_{\text{Er} \rightarrow \text{Ni}}$, and efficiency, $\eta_{\text{Er} \rightarrow \text{Ni}}$, from the Er^{3+} to the Ni^{2+} .

Fig. 3 Relative IQE of the UC emission of CGGG:Er,Ni,Li,Y,Nb compared with the absorption spectrum.