高温超伝導粒子の磁化率異方性に関する研究

Study on Magnetic Susceptibility Anisotropy of High Temperature Superconducting Particles

京大院工ネ科¹,京大院農²: O木村史子¹,堀井滋¹,野津乃祐¹,

柏木勇人¹, 土井俊哉¹, 和田昌久², 木村恒久²

Grad. Schl. Energy Sci., Kyoto Univ.¹, Grad. Schl. Agri., Kyoto Univ.²

F. Kimura¹, S. Horii¹, D. Notsu¹, H. Kashiwagi¹, T. Doi¹, M. Wada², T. Kimura²

E-mail: kimura.fumiko.7z@kyoto-u.ac.jp

1. はじめに

REBa₂Cu₃O_y(RE123) や REBa₂Cu₄O₈(RE124) は高い臨界温度を有する超伝導セラミックスである。これらの結晶は直方晶であるので磁場による 3 次元配向が可能である。これらの微結晶を超伝導材料として実用に供するためには、3 次元配向が必要である。微結晶の 3 次元磁場配向条件を決定するためには、磁化率の異方性を知る必要がある。

3 次元配向体を固めて SQUID で磁化率を測定し磁化率異方性を決定することが 出来る。¹⁾ 今回我々は、X 線回折法により、試料を固めることなく磁化率異方性を 決定できる方法を検討したので報告する。

2. 実験方法

○ErBa₂Cu₄O₈ (Er124)単結晶の作製方法²⁾ モル比1:2:4で Er:Ba:Cu を大気圧下で固相反応法により数回仮焼成(800~925℃ 約 12 時間)して、(Er123 + CuO)を得た。得られた(Er123 + CuO)と KOH を重量比5:6 で混合し、アルミナるつぼで大気圧下フラックス法で Er124 単結晶を育成した。得られた Er124 単結晶をメノウ乳鉢を用いて粉砕した、更にボールミルで粉砕して試料を得た。

〇磁場配向とX線回折実験 微結晶を粘度校正用標準液JS160000(日本グリース㈱社製、粘度 140 Pa s)に懸濁させた。1 Tを発生する永久磁石に試料をセットし、90°毎の変調回転を行った。この際低速回転 ω_s は 6 rpm に固定し、高速回転 ω_f を7.5から30 rpm まで変えた。また、変調回転磁場印加装置とX線のコリメータの間に、円盤状のシャッター (0°と 180°に幅 10°の溝がある)を置き、試料の回転と同期し回転させた。配向が完了後 $in\textsuz}$ 線回折実験を行った。

○データ整理 得られた回折像を2DPソフトウエア(リガク社製)を用いて、方位角βに対する回折強度を得た。方位角プロットのピークをigorソフトウエアを用いてフィッティングによりピークの半価幅を求めた。

3. 結果と考察

溝を入れることにより、Fig. 2 に示すような、単結晶から得られる回折像と同等の回折像が得られた。Er124 は直方晶で χ_1 、 χ_2 、 χ_3 軸は結晶のb、a、c 軸に対応する。変調回転磁場を印加した場合、キャリピラリー方向に χ_3 軸、 χ_1 、 χ_2 軸はキャピラリーの回転速度で回っている。そのため、Fig. 2 に示したように、 90° 毎に $\{020\}$ 及び $\{200\}$ の回折点が観測される。

ところで、磁気エネルギーE は式(1)の様に表される。

 $E = C_{\theta}\theta^2 + C_{\phi}\phi^2 + C_{\psi}\psi^2 - \cdots - (1)$

ここで、 θ 、 ϕ 、 ψ は χ_2 軸、 χ_3 軸、 χ_1 軸回りの揺らぎを表している(Fig. 3 参照)。また、 C_θ 、 C_ϕ 、 C_ψ は磁場強度、磁化率異方性、体積、及び ω_f/ω_s で表される。エネルギーミニマムからの揺らぎは、ボルツマン分布を用いて次式で表される。

 $\langle \psi^2 \rangle = 8k_B \pi (1+r) T \mu_0 / (B^2 (2+\pi-2r+\pi r) V(\chi_2 - \chi_3)) \qquad -----(2)$

 $\langle \theta^2 \rangle = 8k_B \pi (1+r) T \mu_0 / (B^2 (-2+\pi+2r+\pi r) V(\chi_1 - \chi_3)) \quad -----(3)$ $\langle \phi^2 \rangle = 4k_B \pi (1+r) T \mu_0 / (B^2 (2+\pi) (-1+r) V(\chi_1 - \chi_2)) \quad -----(4)$

ここで、 k_B はボルツマン定数、 $r = \omega_f/\omega_s$ 、Tは絶対温度、 μ_0 は真空の透磁率、Bは磁場強度、V は粒子の体積である。ここで、Fig. 2 の回折像の $\{200\}$ 及び $\{020\}$ の揺らぎが $\{\psi^2\}$ 及び $\{\theta^2\}$ に対応している。それぞれの回折点のアジムスプロットよりその半価幅を求め、rに対してプロットし、式 $\{2\}$ 及び $\{3\}$ を用いてフィッティングすることにより、磁化率の異方性 $\{\chi_2-\chi_3\}$ 及び $\{\chi_1-\chi_3\}$ を求めた。 $\{\chi_2-\chi_3\}$ 及び $\{\chi_1-\chi_3\}$ は $\{2,2\times10^4\}$ 及び $\{2,9\times10^4\}$ となった。これは、 $\{2,2\times10^4\}$ の磁化率異方性 $\{2,2\times10^4\}$ 0でなった。一方、 $\{2,2\times10^4\}$ 1に示したシャッターの溝が $\{2,2\times10^4\}$ 2の学いているため、分解能が悪く算出することが出来なかっ

謝辞 本研究の一部は、JST・研究成果最適展開プログラム(A-STEP, ステージ I)および科学研究費助成事業(17H03235)の助成によって行われたものである。

References 1)S. Horii et al., *J. Appl. Phys.* **115** (2014) 113908. 2)M. Yamaki et al., *Jpn. J. Appl. Phys.* **51** (2012) 010107. 3) C. Tsuboi et al., *J. Appl. Cryst.* (2016). 49, 2100–2105.

Fig. 1 Photograph of the orientation attachment mounted on an in-house X-ray diffractometer, where χ and ϕ goniometers are removed. (C): a glass capillary, (X): an X-ray collimator, (SM1 and SM2): stepping motors, (S): a shutter with a diameter of 44 mm, (M): a pair of neodymium magnets generating ca. 1 T, and (IP): an imaging plate at the back.³⁾

Fig. 2 in-situ X-ray diffraction images taken at two different angles (0 and 90°, respectively) obtained with the ration of $\omega_{\rm f}/\omega_{\rm s}$ =9 /6 rpm. Spots in red and blue circles correspond to {020} and {200}, respectively.

Figure 3 Mean square fluctuations $\langle \psi^2 \rangle$ of the χ_2 axis about the χ_1 axis, $\langle \theta^2 \rangle$ of the χ_2 axis about the χ_2 axis, and $\langle \phi^2 \rangle$ of the χ_2 and axes about the χ_3 axis.³⁾