Effect of CO₂ and O₃ treatment on directly Synthesized Graphene on Insulating Substrates at low temperature using Microwave Plasma Enhanced Chemical Vapor Deposition

¹<u>Riteshkumar Vishwakarma</u>*, ¹Zhu Rucheng, ¹Amr Abulwafa, ²Susumu Ichimura, ¹Sudip Adhikari, ¹Masayashi Umeno*

¹C's Techno. Inc., Nagoya ²Nagoya Industries Promotion Corporation, Nagoya

e-mail: nanoritesh@gmail.com, umeno@cstechno.hope.cx

Researchers are still in search of a better ways to synthesize graphene at lower temperatures directly on desired substrates to give an end to search of an alternative to Indium Tin Oxide (ITO) over a period of 20 years [1,2]. In this work, an attempted has been made to grow large area (2 x 2 cm) graphene directly on insulating substrates such as quartz, glass and SiO₂/Si using magnetron generated microwave plasma CVD at substrate temperature 300°C.

Key to this work is use of 0.3 sccm CO₂ during growth to put a control over vertical graphene growth generally forming carbon walls and 15-20 mins of O₃ treatment on as-synthesized graphene to improve sheet carrier mobility and transmittance (Fig.1). Optical microscope UV-Vis spectroscopy, Raman microscopy, X-ray Photoelectron spectroscopy (XPS), Scanning Electron Microscopy (SEM) and Atomic force microscopy (AFM) measurements confirmed the formation of 1.2nm thick continuous graphene layer on glass, quartz and SiO₂/Si with sheet resistance 1300Ω/ \Box and transmittance 80%. Although the formed graphene sheet resistance is near a kilo Ω/ \Box at the moment, the sheet resistance is reduced to 200 Ω/ \Box by doping process. This transfer free low-temperature synthesis approach is believed to explore new dimensions of graphene synthesis and applications[3].

Fig. 1 Effect of Ozone treatment on a) sheet resistance and b) transmittance of PCVD synthesized graphene

Acknowledgments

This work is supported by New Energy and Industrial Technology Development Organization (NEDO), Japan.

References

- [1] Vishwakarma, R., Tanemura M., et al. Transfer free graphene growth on SiO2 substrate at 250 °C. Sci. Rep. **7**, 43756 (2017).
- [2] Kalita G. ,Umeno M. et.al. Direct growth of nanographene films by surface wave plasma chemical vapor deposition and their application in photovoltaic devices. RSC Adv., 2, p 3225 (2012).
- [3] Vishwakarma, R, Umeno M. et.al. Direct Synthesis of Large Area Graphene on Insulating Substrates at Low Temperature using Microwave Plasma CVD (Submitted).