Ce³⁺を用いたアップコンバージョン蛍光体の発光特性評価

Evaluation and Emitting Luminescence Characterization of the Up-Conversion Phosphor using cerium

龍谷大学, ○野々口 達成, 池田 樹弥, 番 貴彦, 山本 伸一

Ryukoku Univ, T. Nonoguchi, T. Ikeda, T. Ban, S.-I. Yamamoto

Email:shin@rins.ryukoku.ac.jp

<u>1. はじめに</u>

Up-Conversion(UC)とは、長波長光を短波長光に変換する技術である。この技術は、低エネルギー 光の利用が可能であるため太陽電池の効率の向上や、励起光に紫外線を用いないため安全であり、 バイオイメージングに期待されている。本研究では、沈殿法を用いて UC 蛍光体 $CaMoO_4$: Yb^{3+}/Tm^{3+} に Ce^{3+} ドーピングすることで純粋な赤色の発光を目的とした。

2. 実験方法

 $Ca: Mo: Yb: Tm: Ce = 0.8: 1.0: 0.05: 0.005: 0.005 の mol 比で、これらに超純水と尿素を加えて加熱(90 <math>\mathbb{C}_3$ h)、撹拌することで沈殿物を得た。その後、沈殿物の洗浄、乾燥(100 \mathbb{C}_1 h)、焼成(900, 1000, 1100 \mathbb{C}_3 h)を行い、UC 蛍光体を作製した。作製した UC 蛍光体に波長 980 nm の近赤外線を照射し、Photoluminescence(PL)測定を行った。また、色度計を用いて色度測定を行った。

3. 実験結果

PL 測定結果を Fig. 1 に示す。Fig. 1 より、焼成温度を 900 \mathbb{C} から 1000 \mathbb{C} に変更することで、波長 650 nm 付近の赤色のピークに対する波長 470 nm 付近の青色のピークが増加した。また、焼成温度を 1000 \mathbb{C} から 1100 \mathbb{C} に変更することで、波長 650 nm 付近の赤色のピークに対する波長 470 nm 付近の青色ピークが減少した。これにより、1100 \mathbb{C} に変更することで、純粋な赤色に近づいた。次に色度測定結果を Fig. 2 に示す。Fig. 2 より、焼成温度が 900 \mathbb{C} から 1000 \mathbb{C} に変更することで赤色側から青色側へ移動したが、焼成温度を 1000 \mathbb{C} から 1100 \mathbb{C} に変更することで青色側から純粋な赤色側へ移動した。以上より、沈殿法を用いて作製した \mathbb{C} aMoO4 : \mathbb{C} 4 \mathbb{C} 5 \mathbb{C} 6 \mathbb{C} 7 \mathbb{C} 7 \mathbb{C} 8 \mathbb{C} 9 $\mathbb{C$

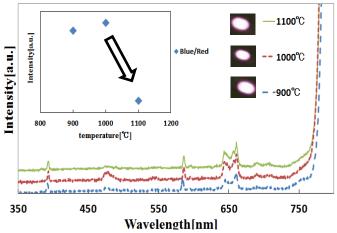


Fig. 1 PL spectra of $CaMoO_4$: Yb^{3+}/Tm^{3+} , Ce^{3+} . Ca: Mo: Yb: Tm: Ce

= 0.8 : 1 : 0.05 : 0.005 : 0.05.

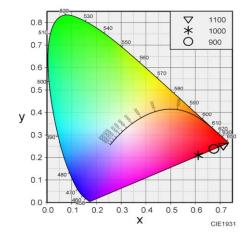


Fig. 2 Chromaticity results of $CaMoO_4$: $Yb^{3+}/Tm^{3+}, Ce^{3+}$.

Ca: Mo: Yb: Tm: Ce = 0.8: 1: 0.05: 0.005: 0.05.