リン処理による SiC/SiO2 界面の炭素関連欠陥の低減機構

Microscopic Mechanism of Reduction in Carbon-Related Defects at a SiC/SiO₂

Interface Due to Phosphorus Treatment

東エ大フロンティア¹, 京大院工², 名大未来研³

^O(P)小林 拓真^{1,2},松下 雄一郎¹,奥田 貴史²,木本 恒暢²,押山 淳³

Tokyo Tech¹, Kyoto Univ.², Nagoya Univ.³ °Takuma Kobayashi^{1,2}, Yu-ichiro Matsushita¹,

Takafumi Okuda², Tsunenobu Kimoto², Atsushi Oshiyama³

E-mail: kobayashi.t.cp@msl.titech.ac.jp

SiC MOSFET では、SiC/SiO₂ 界面の高密度欠陥準位による移動度劣化が問題となっている。酸 化後の P 処理 (POCl₃, O₂, N₂ の混合ガスアニール)が界面準位低減に有効であることが実験的に 示された[1]が、そのメカニズムの理解は十分でない。本研究では、特に C 欠陥に焦点を当て、P 処理が C 欠陥を低減する機構について第一原理計算により調べた結果[2]を報告する。

計算には Real Space Density Functional Theory code (RSDFT) を用いた。まず、P 処理により SiO₂ がリンガラス (PSG) に変化するため、その構造を同定するための分子動力学計算を行なった。結 果、PSG の P 原子は-O₃PO 構造 (Fig.1) をとることを確認した。次に、P 処理中に SiC/SiO₂ 界面 から脱離する CO 分子の挙動に着目し、種々の静的なエネルギー計算を行なった。その結果、-O₃PO 構造は約 930℃以上で CO 分子を吸着して-O₃PCO₂ 構造となり安定になることが分かった。 つまり、SiO₂ 中に導入される-O₃PO 構造 は、約 930℃以上の P 処理で C 欠陥を CO 分子として分 解・吸着する効果を示すと考えられる。実際に、P 処理後に-O₃PCO₂ 構造が界面近傍に形成されて いるかを確認するため、二次イオン質量分析 (SIMS) を行った。Fig.2 に示す結果のように、900℃ の熱処理では C の分布は酸化直後とほぼ同等であるのに対し、1000℃以上の P 処理で SiO₂ 側に数 nm 程度 C 分布の裾の広がりが検出された。このことは 1000℃以上の熱処理で-O₃PCO₂ 構造が界 面近傍の SiO₂領域に形成されることを示唆している。また、Fig.3 に High-Low 法により評価した 界面準位密度の P 処理温度依存性を示す。Fig.2 で C 分布の拡がりが検出された 1000℃以上の熱 処理で、たしかに界面準位の大幅な低減が見られ、モデルの妥当性を示している。なお、-O₃PCO₂ 構造が SiC の gap 中に準位をつくらないことは確認した。

[1] D. Okamoto, et al., Appl. Phys. Lett. 96, 203508 (2010). [2] T. Kobayashi, et al., Appl. Phys. Express 11, 121301 (2018).

Fig.1: Structure of $-O_3PO$ obtained by first-principles molecular dynamics calculation. Blue, red, and silver balls depict the Si, C, and P atoms, respectively.

Fig.2: Depth profiles of carbon concentration in SiC/SiO_2 samples obtained by secondary ion mass spectrometry (SIMS).

Fig. 3: POCl₃ annealing temperature dependence of interface state density near the conduction band edge of SiC ($E_{\rm C} - 0.5$ eV) in SiC MOS structures obtained by a high-low method.